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Abstract  With increasing consumer demand for “clean label” products, the use of 
natural ingredients is required in the food industry. Protein/polysaccharide complexes are 
considered good alternatives to synthetic emulsifiers and stabilizers for formulating 
stable emulsion-based foods. Milk protein and carrageenan are widely used to improve 
the physical properties and stability of dairy food products. In a previous study, milk 
protein isolate (MPI) was conjugated with κ-carrageenan (κ-Car) in a wet-heating system 
through the Maillard reaction, and the Maillard conjugates (MC) derived from MPI and 
κ-Car effectively improved the stability of oil-in-water emulsions. Therefore, MPI/κ-Car 
conjugates were used in whipping cream as natural emulsifiers in this study, and the 
physical and rheological properties of whipping creams stabilized using MPI/κ-Car MC 
and MPI/κ-Car electrostatic complexes (EC) were investigated. The whipping creams 
stabilized with MPI/κ-Car MC have lower rheological parameters (ηa,50, K, G′, and G″) 
than those of whipping creams stabilized with MPI/κ-Car EC. Although the overrun value 
was slightly reduced owing to the addition of MPI/κ-Car MC, the stability of the whipped 
creams with MC was effectively improved due to enhanced water-holding ability by 
conjugation. 
  
Keywords  Maillard conjugate, natural emulsifier, whipping cream, rheological behavior, 
whipping property 

Introduction 

Nowadays, the use of natural ingredients is required in the food industry, because 

consumers are demanding “clean label” products and they prefer natural food 

ingredients. Many food manufactures are attempting to replace synthetic emulsifiers 

and stabilizers with natural ingredients to produce “clean label” products (Lam and 

Nickerson, 2013; Ozturk and McClements, 2016). Proteins and polysaccharides are  
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considered good alternatives for the stabilization of emulsion foods (Bouyer et al., 2012; Setiowati et al., 2017). Proteins can 

effectively form small oil droplets even at low concentrations, but they are sensitive to environmental conditions such as pH 

and ionic strength. In contrast, polysaccharides can form extremely stable emulsions even in environments with varying pH, 

ionic strength, and temperature. However, a high concentration of polysaccharides is required for emulsion formation because 

of their low surface activity (McClements and Gumus, 2016; McClements et al., 2017). To overcome these individual 

limitations of proteins and polysaccharides, combining the advantages of proteins (high surface activity) and polysaccharides 

(high stability) may serve as a valuable strategy. There exist two classes of protein/polysaccharide complexes: Electrostatic 

complexes (EC) and Maillard conjugates (MC) (Bouyer et al., 2012). 

Protein/polysaccharide EC are non-covalent bonds formed due to attractive electrostatic interaction between anionic 

polysaccharides and positively charged proteins (Evans et al., 2013). EC can improve the heat stability of emulsions through 

the formation of a homogenous biopolymer layer on the surface of oil droplets. Nevertheless, these complexes are sensitive to 

environmental conditions because the protein–polysaccharide interaction is influenced by solvent conditions such as pH and 

ionic strength (Lam and Nickerson, 2013; Sedaghat Doost et al., 2019). In contrast, MC are covalent bonds that can occur 

spontaneously during the early stages of the Maillard reaction (Nooshkam and Varidi, 2020). The polysaccharide moieties of 

MC provide greater layer thickness on the droplet surfaces, which can improve stability owing to the strong steric repulsion 

between droplets. In addition, the thickness and steric stabilization effects of MC-stabilized droplets can offset the electrostatic 

screening effects, which can be stable at high salt concentrations and under acidic pH (Akhtar and Ding, 2017; O’Mahony et 

al., 2017).  

Whipping cream is a representative oil-in-water emulsion food containing 30%–40% milk fat, and κ-carrageenan (κ-Car) is 

widely used in dairy products to improve their physical and textural properties because of its ability to interact with casein 

micelles (Olivares et al., 2010; Seo et al., 2018). However, the addition of κ-Car to cream-based products with high levels of 

milk fat can lead to depletion-flocculation, eventually resulting in creaming destabilization (Seo and Yoo, 2021a). In a 

previous study, milk protein isolate (MPI) was sufficiently conjugated with κ-Car through the Maillard reaction at 65℃ for 

24 h in a wet-heating system, and the stability of the oil-in-water emulsions stabilized using the MPI/κ-Car conjugates was 

effectively improved because of the steric hindrance effects caused by the absorption of the MPI/κ-Car conjugates onto the fat 

droplet surfaces (Seo and Yoo, 2021b). In the present study, we investigate the effects of MPI/κ-Car MC as a natural 

emulsifier in whipping creams and compare them with MPI/κ-Car EC.  

 

Materials and Methods 

Materials 
To prepare the MPI/κ-Car MC and EC, MPI (MPI 1900; protein 85% w/w) was obtained from Vitalus Nutrition 

(Abbotsford, Canada), and κ-Car was purchased from Sigma-Aldrich Chemical (MO, USA). Fresh cream containing 38% 

(w/w) milk fat was supplied by Seoul Dairy Co-op (Ansan, Korea) for preparing whipping cream samples stabilized with 

MPI/κ-Car MC and MPI/κ-Car EC. 

 

Preparation of milk protein isolate/κ-carrageenan Maillard conjugates (MPI/κ-Car MC) and MPI/κ-Car 

electrostatic complexes (EC) 
MPI/κ-Car MC and MPI/κ-Car EC were prepared following the method of Seo and Yoo (2021b). MPI and κ-Car were 
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dissolved at concentrations of 1% (w/w) in distilled water for 3 h at 25℃ and 90℃, respectively. The MPI/κ-Car EC was 

produced by blending the dissolved MPI and κ-Car solutions for 30 min in a 1:1 ratio, and the MPI/κ-Car MC was prepared 

by heating the MPI/κ-Car EC solution with continuous shaking. The reaction temperature was set at 65℃ to minimize protein 

denaturation, and the 24 h reaction time was determined according to the result in a previous study. Conjugation between the 

MPI and the κ-Car was identified by means of gel electrophoresis and size-exclusion chromatography (Seo and Yoo, 2021b). 

 

Manufacture of whipping cream stabilized with milk protein isolate/κ-carrageenan Maillard conjugates 

(MPI/κ-Car MC) and MPI/κ-Car electrostatic complexes (EC) 
Whipping cream samples stabilized with different concentrations of MPI/κ-Car MC and MPI/κ-Car EC (0%, 0.1%, and 

0.2% w/w) were prepared by mixing 80% (w/w) fresh cream, and different amounts of MPI/κ-Car MC and MPI/κ-Car EC 

solutions, and distilled water for 10 min at 65℃ by using a stirrer (Eurostar 20, IKA®, Staufen, Germany) operated at 1,000 

rpm. Detailed formulations of these whipping cream samples are summarized in Table 1. The homogenization of blended 

mixes was carried out using a two-stage valve homogenizer (APV-1000, Invensys APV, Albertslund, Denmark) at pressures 

of 50 bar, and 10 bar was maintained in the second stage valve. The homogenized samples were immediately cooled and 

stored overnight at 5℃. The total solid and fat contents of the whipping cream samples were analyzed by the oven drying 

method and the Gerber method, respectively (AOAC, 2005). 

 

Rheological measurements 
The rheological properties of the whipping cream samples were measured by the method of Seo and Yoo (2021a) with 

some modifications using the Haake RheoStress 1 (Haake GmbH, Karlsruhe, Germany). The flow behavior was investigated 

in shear rates ranging from 0.4 to 500 s–1. The power-law model Eq. (1) was used to determine the steady shear rheological 

properties, and apparent viscosity (ηa,50) of samples was calculated at 50 s–1 by using the K (consistency index) and n (flow 

behavior index) values. 

 σ = Kγ̇n              (1) 
Table 1. Formulations of whipping creams stabilized using different levels of MPI/κ-Car EC and MPI/κ-Car MC, and the resulting total 
solid and fat contents in 100 g of final product 

Control 
MPI/κ-Car EC MPI/κ-Car MC 

0.1% 0.2% 0.1% 0.2% 

Cream (38% fat) 80 80 80 80 80 

MPI/κ-Car EC 1% (w/w) solution - 10 20 - - 

MPI/κ-Car MC 1% (w/w) solution - - - 10 20 

Water 20 10 - 10 - 

Total solid (%) 36.3±0.1 36.3±0.1 36.2±0.0 36.3±0.1 36.3±0.3 

Fat (%) 30.8±0.3 31.1±0.2 30.6±0.2 31.2±0.5 31.0±0.6 

Values are the means of three measurements±SD. 
Control, no protein/polysaccharide complexes; MPI/κ-Car EC, milk protein isolate/κ-carrageenan electrostatic complexes; MPI/κ-Car MC, milk 
protein isolate/κ-carrageenan Maillard conjugates. 
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The dynamic rheological properties were also measured by the frequency sweep test, and Gʹ (storage modulus), Gʺ (loss 

modulus), and tan δ (Gʺ/Gʹ) values were used to describe the viscoelastic behavior of samples. 

 

Measurement of fat droplet size and distribution 
The fat droplet size and distribution of the whipping cream samples were analyzed by the method of Seo et al. (2018) using 

the Mastersizer 3000 (Malvern Instruments, Worcestershire, UK). The D[3,2], D[4,3], and span values were used to 

determine the fat droplet size distribution of the whipping cream samples. The D[3,2], D[4,3], and span values are surface-

weighted mean, volume-weighted mean, and dispersion index, respectively, which were calculated from Eq. (2)–(4), 

respectively: 

   D[3,2] = ∑ 𝑛௜𝑑௜ଷ∑ 𝑛௜𝑑௜ଶ                                                                                  (2) 

   D[4,3] = ∑ 𝑛௜𝑑௜ସ∑ 𝑛௜𝑑௜ଷ                                                                                  (3) 

   span = 𝐷𝑣90 − 𝐷𝑣10𝐷𝑣50                                                                              (4) 

 

where di is the average diameter of the i class interval, and ni is the number of droplets with diameter di. The Dv10, Dv50, and 

Dv90 values are average fat droplet sizes corresponding to the cumulative distribution at 10%, 50%, and 90%, respectively. 

 

Measurement of whipping cream stability 
The stability of the whipping cream samples was evaluated through acceleration testing at 40℃ by using a multiple light 

scattering spectroscopy (Turbiscan Tower, Formulaction, Toulouse, France). The whipping cream samples with different 

levels of MPI/κ-Car MC and MPI/κ-Car EC were transferred to 20-mL glass tubes, separately, and changes in the 

backscattering (BS) intensity were measured to investigate the destabilization mechanisms. The glass tubes were scanned 

from the bottom to the top at intervals of 15 min for 24 h. 

 

Overrun determination  
All whipping cream samples were stored at 5℃ for 24 h, and 500 g of each of the whipping cream samples was whipped 

for 4 min in a stand mixer bowl (KitchenAid Heavy Duty, Max wattage 325 W, KitchenAid, Benton Harbor, MI, USA) to 

evaluate their whipping properties. The overrun value of the whipped creams was measured by weighting an equal volume of 

whipping cream and whipped cream, and it was calculated using the following Eq. (5):  

   OR (%) = 𝑊ଵ − 𝑊ଶ𝑊ଶ × 100                                                                        (5) 

 

where W1 and W2 are the masses of the whipping cream and whipped cream, respectively.  
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Measurement of serum drainage (SD) 
Whipped creams (50±3 g) were placed on a wire screen mesh, and the serum loss dripping through the wire screen mesh 

was collected at 24±1℃ and weighed after 5 h. SD was calculated as a percentage (w/w) of serum loss from the whipped 

cream by using the following Eq. (6): 
   SD (%) = 𝑊ଵ𝑊ଶ × 100                                                                              (6) 

 

where W1 and W2 denote the masses of serum loss and whipped cream, respectively.  
 

Statistical analysis 
Statistical analysis was performed using one-way ANOVA followed by Tukey’s test using the IBM SPSS Statistics 24 

software suite (IBM, Armonk, NY, USA). A value of p<0.05 was considered significant. 

 

Results and Discussion  

Flow behavior 
The flow behaviors of the whipping cream samples stabilized with MPI/κ-Car MC and MPI/κ-Car EC are summarized in 

Table 2. All samples exhibited shear-thinning behavior with lower flow behavior index values (n=0.27–0.47) than 1 in the 

shear rate range from 0.4 to 500 s–1. The shear-thinning behavior of dairy creams can be explained in terms of the breaking 

effect of flocculated fat droplets, which reduces the apparent viscosity at high shear rates (Derkach, 2009; Seo et al., 2018). 

Moreover, the whipping creams exhibited higher shear-thinning behaviors with increasing concentrations of MPI/κ-Car MC 

and MPI/κ-Car EC. This result is consistent with that of Kováčová et al. (2010), who reported that the flow behavior index 

(n) of whipping cream decreased as the κ-Car concentration increased from 0% to 0.04%. Carrageenan can induce the shear-

thinning behavior due to its flow-resistant entangled network (Javidi et al., 2016; Velásquez-Cock et al., 2019). As a result, 

the shear-thinning behavior of whipping creams with MPI/κ-Car MC and MPI/κ-Car EC can be explained based on the 

destruction of the flocculated fat droplets and compact entanglements of κ-Car. 

The ηa,50 (apparent viscosity) and K (consistency index) of the whipping cream samples increased as the MPI/κ-Car EC and 

Table 2. Flow behaviors of whipping creams stabilized using different levels of MPI/κ-Car EC and MPI/κ-Car MC 

 
Conc. 
(%) 

Apparent viscosity 
ηa,50 (Pa s) 

Power law 

n (-) K (Pa sn) r2 

Control - 0.10±0.01a 0.47±0.04a 0.81±0.22a 0.96 

MPI/κ-Car EC 0.1 1.03±0.09b 0.41±0.02a 10.3±1.56b 0.98 

0.2 2.58±0.04c 0.27±0.03b 45.7±4.64c 0.86 

MPI/κ-Car MC 0.1 1.02±0.02b 0.42±0.02a 9.90±0.81b 0.99 

0.2 2.21±0.07d 0.29±0.02b 35.7±1.32d 0.98 

Values are the means of three measurements±SD. 
a–d Mean values in the same column with different letters are significantly different (p<0.05). 
Control, no protein/polysaccharide complexes; MPI/κ-Car EC, milk protein isolate/κ-carrageenan electrostatic complexes; MPI/κ-Car MC, milk 
protein isolate/κ-carrageenan Maillard conjugates. 



Food Science of Animal Resources  Vol. 42, No. 5, 2022 

894 

MPI/κ-Car MC concentrations increased. This result was caused by an increase in the concentration of carrageenan 

aggregates in the aqueous phase of whipping creams (Ji et al., 2008). In terms of the ηa,50 and K values, the whipping cream 

samples stabilized with the MPI/κ-Car EC exhibited higher ηa,50 and K values than the whipping cream samples stabilized 

with the MPI/κ-Car MC at the same concentration. Milk fat droplets stabilized with protein/polysaccharide EC are 

predominantly surrounded by protein molecules, and most polysaccharide molecules are in the aqueous phase, leading to an 

increase in the apparent viscosity. In case of the protein/polysaccharide MC, the polysaccharide molecule conjugated with 

protein can be adsorbed on the surface of the fat droplets because of the amphipathic properties of the protein (Seo and Yoo, 

2021b). As a result, the ηa,50, and K values of the whipping cream samples stabilized with the MC can be reduced by 

decreasing the amount of free carrageenan molecules in the aqueous phase. Therefore, we concluded that the flow behavior of 

the whipping creams stabilized with MPI/κ-Car MC and MPI/κ-Car EC can be influenced by stabilizer concentrations and the 

conjugation between the MPI and κ-Car molecules. 

 

Dynamic shear properties 
Changes in G′ (storage modulus) and G″ (loss modulus) are plotted as functions of frequency (ω) in Fig. 1. The dynamic 

moduli (G′ and G″) of the control sample without MPI/κ-Car MC and MPI/κ-Car EC were not measured, because the widely 

scattered dynamic data yielded unreliable values. The Gʹ and Gʺ values of the whipping cream samples increased as the 

concentrations of MPI/κ-Car MC and MPI/κ-Car EC increased, indicating the increased intermolecular interactions. Similar 

results were reported in cream desserts with different κ-Car concentrations (Míšková et al., 2021). The higher G′ and G″ 

values probably resulted from κ-Car gel formation at high concentrations. The κ-Car molecules can form the helical 

aggregation due to the formation of junction regions between κ-Car chains with the strong negative charge owing to sulfate 

groups (Ji et al., 2008; Seo and Yoo, 2021a). Thus, the increased G′ and G″ values of the whipping cream samples with higher 

κ-Car concentrations can be attributed to the formation of a strong gel structure by κ-Car molecules. 

The dynamic moduli (G′ and G″) of the whipping cream samples stabilized with MPI/κ-Car MC were lower than those of 

the whipping cream samples stabilized with MPI/κ-Car EC at the same concentration (Table 3). This result is consistent with 

 

Fig. 1. Plots of log G′ and G″ versus log ω for whipping creams stabilized with different levels of MPI/κ-Car EC and MPI/κ-Car MC: (●) 
control, (△) MPI/κ-Car MC 0.1%, (▲) MPI/κ-Car MC 0.2%, (□) MPI/κ-Car EC 0.1%, and (■) MPI/κ-Car EC 0.2%. MPI/κ-Car EC, milk 
protein isolate/κ-carrageenan electrostatic complexes; MPI/κ-Car MC, milk protein isolate/κ-carrageenan Maillard conjugates. 
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that of Sun et al. (2011), who reported lower G′ and G″ values of whey protein isolate/dextran conjugates in the gel structure 

system. The conjugation caused by the Maillard reaction between protein and polysaccharide can induce changes in 

properties such as surface charge, polarity, and molecular interaction (Consoli et al., 2018). Seo and Yoo (2021b) reported the 

conformational change of MPI/κ-Car conjugates through fluorescence emission analysis. Therefore, the lower G′ and G″ 

values of the whipping cream samples stabilized with MC can be ascribed to the steric hindrance effect induced by the 

structural changes due to the conjugation between MPI and κ-Car, which can inhibit the helical aggregation of κ-Car 

molecules (Spotti et al., 2014).  

All of the whipping cream samples stabilized with MPI/κ-Car MC and MPI/κ-Car EC exhibited tan δ (G″/G′) values lower 

than 1, meaning that the elastic behavior is more pronounced than the viscous behavior. The tan δ of the whipping cream 

samples decreased as the concentrations of MPI/κ-Car MC and MPI/κ-Car EC increased. However, no significant differences 

in tan δ values were observed between MPI/κ-Car EC and MPI/κ-Car MC at the same concentration. The decrease in the tan 

δ value with increasing MPI/κ-Car MC and MPI/κ-Car EC concentrations may be ascribed to intermolecular interactions, and 

this strong interaction can be attributed to helical aggregation at high κ-Car concentrations, as mentioned above. The 

electrostatic interaction between the negatively charged κ-Car molecules and the positively charged region of the casein 

micelles in MPI can lead to the formation of the elastic gel structure (Míšková et al., 2021; Spagnuolo et al., 2005). Based on 

these observations, we can conclude that the rheological properties of the whipping cream samples were strongly influenced 

by the addition of MPI/κ-Car MC and MPI/κ-Car EC and by the conjugation between MPI and κ-Car molecules. 

 

Fat droplet size and distribution 
The droplet sizes and distributions of the whipping cream samples with different levels of MPI/κ-Car MC and MPI/κ-Car 

EC are illustrated and summarized, respectively, in Fig. 2 and Table 4. The D[3,2] and D[4,3] values of the whipping cream 

samples stabilized with MPI/κ-Car MC and MPI/κ-Car EC were considerably higher than those of the control sample. The 

elevated D[3,2] and D[4,3] values can be attributed to the formation of milk fat globule clusters by κ-Car with long thin 

stranded structure, which can be adsorbed on casein micelles and form interconnections between casein micelles on different 

fat droplets (Martin et al., 2006). According to Guzey and McClements (2006), the presence of excess polysaccharide 

molecules in the aqueous phase can cause the flocculation of fat droplets through the depletion mechanism. Therefore, the 

larger droplet size of the whipping cream samples with MPI/κ-Car MC and MPI/κ-Car EC can be explained using the 

depletion effect and the interconnection of milk fat droplets by κ-Car molecules.  

The span values of the whipping cream samples increased as the concentration of MPI/κ-Car MC and MPI/κ-Car EC  

Table 3. Storage modulus (G′), loss modulus (G″), and tan δ values at 6.28 rad s–1 of whipping creams stabilized with different levels of 
MPI/κ-Car EC and MPI/κ-Car MC 

Conc. (%) G′ (Pa) G″ (Pa) tan δ (-) 

MPI/κ-Car EC 0.1 51.4±3.19a 14.1±2.55a 0.27±0.03a 

0.2 114±2.31b 22.3±1.62b 0.20±0.01b 

MPI/κ-Car MC 0.1 31.8±2.75c 8.78±0.77c 0.28±0.01a 

0.2 101±3.50d 20.4±2.09b 0.20±0.03b 

Values are the means of three measurements±SD. 
a–d Mean values in the same column with different letters are significantly different (p<0.05). 
MPI/κ-Car EC, milk protein isolate/κ-carrageenan electrostatic complexes; MPI/κ-Car MC, milk protein isolate/κ-carrageenan Maillard conjugates.
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increased, indicating that the whipping creams with MC and EC had a broader size distribution than that of the control 

sample. At the same concentration, the whipping cream samples with MPI/κ-Car MC had lower span values than those of the 

whipping cream samples with MPI/κ-Car EC. This result may be attributed to the inhibition of depletion-flocculation owing 

to the steric repulsion generated by MC on the droplet surface. Covalent attachment of κ-Car molecules to milk proteins can 

increase the thickness of the interfacial surface on milk fat droplets, leading to increased steric repulsion between the milk fat 

droplets (Gu et al., 2017; Guo et al., 2019). Seo and Yoo (2021b) reported that the stability of oil-in-water emulsions 

stabilized with MPI/κ-Car conjugates was improved owing to the strong steric hindrance between the fat droplets due to the 

adsorption of milk proteins linked to the κ-Car molecules on the surfaces of fat droplets. As a result, emulsification properties 

can be improved through conjugation between the MPI and κ-Car molecules.  

 

Stability during storage 
In the present study, Turbiscan was used to investigate the destabilization mechanisms of the whipping creams stabilized 

 

Fig. 2. Fat droplet size distribution of whipping creams stabilized with different levels of MPI/κ-Car EC and MPI/κ-Car MC. Control, no 
protein/polysaccharide complexes; MPI/κ-Car EC, milk protein isolate/κ-carrageenan electrostatic complexes; MPI/κ-Car MC, milk protein 
isolate/κ-carrageenan Maillard conjugates. 

Table 4. Droplet size and distribution of whipping creams stabilized with different levels of MPI/κ-Car EC and MPI/κ-Car MC

 Conc. (%) 
Fat droplet size (µm) 

Span (-) 
D[3,2] D[4,3] 

Control - 1.87±0.02a 2.90±0.16a 2.09±0.07a 

MPI/κ-Car EC 0.1 5.05±0.22b 14.2±1.10b 2.73±0.21b 

0.2 5.76±0.30c 17.9±1.50c 3.24±0.20c 

MPI/κ-Car MC 0.1 4.75±0.09b 12.8±0.78b 2.50±0.06b 

0.2 5.75±0.22c 17.4±1.27c 2.76±0.09b 

Values are the means of three measurements±SD. 
a–c Mean values in the same column with different letters are significantly different (p<0.05). 
Control, no protein/polysaccharide complexes; MPI/κ-Car EC, milk protein isolate/κ-carrageenan electrostatic complexes; MPI/κ-Car MC, milk 
protein isolate/κ-carrageenan Maillard conjugates. 
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with MPI/κ-Car MC and MPI/κ-Car EC. This instrument can evaluate the real dispersion state of emulsion foods by 

measuring changes in the transmission light and BS light, which can be used to predict the destabilization mechanisms of 

emulsions that cannot be observed with the naked eye (Feng et al., 2020; Zheng et al., 2018). Changes in the BS profiles of 

whipping cream samples over 24 h at 40℃ as a function of the height of the glass tubes are presented in Fig. 3. The BS 

profile of the control sample (whipping cream without MPI/κ-Car MC and MPI/κ-Car EC) exhibited a decrease in BS 

intensity at the bottom of the glass tubes (at a height of 0–5 mm) and an increase in BS intensity at the top of glass tubes (at a 

height of 40 mm) during storage. These results indicate that milk fat droplets migrate to the upper part, which decreases the 

fat droplet concentration at the bottom of the glass tubes (Boostani et al., 2020). A similar tendency in the BS curve was 

observed for the other whipping cream samples with MPI/κ-Car MC and MPI/κ-Car EC. Based on these observations, we 

conclude that the whipping cream was destabilized according to the creaming mechanism. 

The BS intensity profiles of the whipping creams stabilized with MPI/κ-Car MC and MPI/κ-Car EC exhibited broader 

fluctuations than that of the control sample, meaning that the stability of the whipping creams decreased with the addition of 

MC and EC. This result may be caused by the presence of excess free κ-Car molecules in the aqueous phase, which can lead 

to depletion-flocculation (Guzey and McClements, 2006; Seo and Yoo, 2021a). In case of the whipping creams with the same 

concentration of MPI/κ-Car MC and MPI/κ-Car EC, the BS profiles of the whipping creams stabilized with MPI/κ-Car MC 

exhibited narrower fluctuations than those of the whipping creams stabilized with MPI/κ-Car EC. This result indicates that 

 

Fig. 3. Backscattering (BS) profiles of whipping creams stabilized with different levels of MPI/κ-Car EC and MPI/κ-Car MC. Control, no 
protein/polysaccharide complexes; MPI/κ-Car EC, milk protein isolate/κ-carrageenan electrostatic complexes; MPI/κ-Car MC, milk protein 
isolate/κ-carrageenan Maillard conjugates. 
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the whipping creams stabilized with MC underwent creaming at a slower rate than the whipping creams stabilized with EC. 

The improved stability can be explained by the ability of the MC adsorbed on the surface of milk fat droplets to form a thick 

layer and effectively prevent flocculation between the milk fat droplets owing to strong steric hindrance (Pirestani et al., 

2017; Seo and Yoo, 2021b). Consequently, the MC derived from MPI and κ-Car can improve the physical stability of 

whipping cream systems with protein/polysaccharide complexes owing to the steric hindrance effect resulting from their 

adsorption on the surface of milk fat droplets. 

 

Overrun of whipped cream 
All whipping cream samples reached the maximum volume within 4 min, and the control sample without MPI/κ-Car MC 

and MPI/κ-Car EC had the highest overrun value (130%). This result can be attributed to the higher foaming ability of milk 

proteins, which can be adsorbed rapidly on the foam interface and enhance air incorporation (Dhungana et al., 2020; Long et 

al., 2016). The overrun values of the whipping cream samples decreased with the addition of MPI/κ-Car MC and MPI/κ-Car 

EC, and the decrease was remarkable when the stabilizer concentration was 0.2%, as shown in Fig. 4A. A similar tendency 

was observed by Ghribi et al. (2021), who reported that the overrun value of whipping creams containing soy protein 

isolate/κ-Car mixture decreased as the κ-Car concentration increased. According to Biasutti et al. (2013), the overrun value is 

influenced by viscosity, and a high viscosity level can prevent vigorous agitation and reduce the incorporation of gas bubbles, 

resulting in a lower overrun value. At the same concentrations of MPI/κ-Car MC and MPI/κ-Car EC, no significant difference 

in the overrun value was observed between the whipping creams with MC and those with EC. Consequently, the overrun 

values of the whipping creams stabilized with MPI and κ-Car were not influenced by the conjugation between MPI and κ-Car 

molecules, but they were strongly influenced by the concentrations of MPI/κ-Car MC and MPI/κ-Car EC, which can increase 

the viscosity of whipping creams.   

 

Serum drainage (SD) of whipped cream 
SD was measured to evaluate the stability of the whipped creams stabilized with MPI/κ-Car MC and MPI/κ-Car EC, and 

the SD values of the whipping cream samples are shown in Fig. 4B. In this study, the SD values of the whipping cream 

samples ranged from 0.94% to 23%, and the control sample had a considerably higher SD value than those of the whipping 

 

Fig. 4. Overrun (A) and serum drainage (B) of whipped creams stabilized with different levels of MPI/κ-Car EC and MPI/κ-Car MC. The 
values that are assigned different letters are significantly different (p<0.05). Control, no protein/polysaccharide complexes; MPI/κ-Car EC, 
milk protein isolate/κ-carrageenan electrostatic complexes; MPI/κ-Car MC, milk protein isolate/κ-carrageenan Maillard conjugates. 
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creams stabilized with MPI/κ-Car MC and MPI/κ-Car EC. This result indicates that the whipping cream samples without MC 

and EC had a fragile foam structure, resulting in higher serum loss. The serum loss of the whipping cream samples was 

improved with the addition of MPI/κ-Car MC and MPI/κ-Car EC, and their SD values decreased as the concentration of MC 

and EC increased. This improved stability can be attributed to the formation of the gel structure owing to the aggregation of 

κ-Car helices (Ji et al., 2008). According to Ghribi et al. (2021), κ-Car can enhance foam stability by increasing film rigidity 

and viscoelasticity, which can stabilize air bubbles.  

In case of the whipping cream samples with the same concentration of MPI/κ-Car MC and MPI/κ-Car EC, the whipped 

creams with MPI/κ-Car MC exhibited slightly lower SD values than the whipped creams with MPI/κ-Car EC, indicating that 

MC can form more stable whipped creams than EC. These results can be explained by the enhanced water-holding ability of 

MC. Capar and Yalcin (2021) reported that the water-holding ability of whey protein isolate was reinforced after conjugation 

with the κ-Car molecule through the Maillard reaction. The syneresis phenomenon of κ-Car gel can be improved through 

conjugation with proteins due to the steric hindrance effect, which limits the formation in junction regions between κ-Car 

chains that can squeeze water from the κ-Car gel network (Ji et al., 2008; Wang et al., 2018). Based on these observations, we 

concluded that the stability of whipped cream can be reinforced by adding MPI/κ-Car MC, and MC can effectively improve 

the stability of whipped creams rather than EC owing to the enhanced water-holding ability due to conjugation. 

 

Conclusion 

Protein/polysaccharide complexes are considered good alternatives to synthetic emulsifiers and stabilizers for producing 

stable emulsion foods, and protein-polysaccharide conjugation through the Maillard reaction is an effective strategy to 

improve functional properties. Thus, we attempted to apply the MPI/κ-Car MC to whipping creams to improve their 

rheological and whipping properties in this study. The rheological parameters (ηa,50, K, G′, and G″) of the whipping cream 

samples stabilized with MPI/κ-Car MC were lower than those of the whipping cream samples stabilized with MPI/κ-Car EC 

owing to the steric hindrance effect of conjugation. The whipping cream samples stabilized with MPI/κ-Car MC and MPI/κ-

Car EC exhibited higher D[3,2], D[4,3], and span values than those of the control sample, but the whipping cream samples 

with MC exhibited a narrower distribution than that of the whipping cream samples stabilized with EC at the same 

concentration, indicating that the emulsification ability can be improved owing to the conjugation between MPI and κ-Car 

molecules. Although the addition of 0.1% MPI/κ-Car MC and MPI/κ-Car EC to the whipping cream samples marginally 

reduced the overrun value, serum loss was effectively reduced upon the addition of MC and EC. In particular, the whipping 

cream samples stabilized with MC had lower SD values than those stabilized with EC due to enhanced water-holding ability. 

However, the concentration of the MPI/κ-Car MC should be considered from a sensory point of view, because an excessively 

high MPI/κ-Car MC concentration can influence the color of whipping creams, making them appear more yellow. 

Consequently, MC can be used as natural emulsifiers and stabilizers instead of EC in whipping cream products to obtain the 

desired rheological and whipping properties. 
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