DOI QR코드

DOI QR Code

Emergence of a New Rust Disease of Virginia Creeper (Parthenocissus quinquefolia) through a Host Range Expansion of Neophysopella vitis

  • Na, Dong-Hwan (Department of Biological Science, Kunsan National University) ;
  • Lee, Jae Sung (Department of Biological Science, Kunsan National University) ;
  • Shin, Hyeon-Dong (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University) ;
  • Ono, Yoshitaka (College of Education, Ibaraki University) ;
  • Choi, Young-Joon (Department of Biological Science, Kunsan National University)
  • Received : 2022.01.28
  • Accepted : 2022.05.09
  • Published : 2022.08.31

Abstract

Virginia creeper (or five-leaved ivy; Parthenocissus quinquefolia) is one of the most popular and widely grown climbers worldwide. In September 2021, Virginia creeper leaves with typical rust symptom were found in an arboretum in Korea, with severe damage. Globally, there is no record of a rust disease on Virginia creeper. Using morphological investigation and molecular phylogenetic inferences, the rust agent was identified as Neophysopella vitis, which is a rust pathogen of other Parthenocissus spp. including Boston ivy (P. tricuspidata). Given that the two ivy plants, Virginia creeper and Boston ivy, have common habitats, especially on buildings and walls, throughout Korea, and that N. vitis is a ubiquitous rust species affecting Boston ivy in Korea, it is speculated that the host range of N. vitis may recently have expanded from Boston ivy to Virginia creeper. The present study reports a globally new rust disease on Virginia creeper, which could be a major threat to the ornamental creeper.

Keywords

Acknowledgement

This work was supported by the National Academy of Agricultural Science grant [PJ0149560112021] from the Rural Development Administration, Korea.

References

  1. Richardson RJ, Marshall MW, Uhlig RE, et al. Virginia creeper (Parthenocissus quinquefolia) and wild grape (Vitis spp.) control in Fraser fir. Weed Technol. 2009;23(1):184-187. https://doi.org/10.1614/WT-08-028.1
  2. Lee S, Sim W. A study on the wall plants for the improvement of the urban environment: with special reference to Seoul. J Korean Instit Landscape Architect. 1994;22:1121-1134.
  3. Jung T-G, So J-H, Lee E-J, et al. The experiment of vine for covering the traffic noise barrier. J Korean Soc Environmen Restoration Technol. 1999;2:72-82.
  4. Ckitchfield WB. Shoot growth and leaf dimorphism in boston ivy (Parthenocissus tricuspidata). Am J Botany. 1970;57(5):535-542. https://doi.org/10.1002/j.1537-2197.1970.tb09846.x
  5. Shin HD, Choi YJ, Hong SH, et al. Grovesinia moricola occurring on Parthenocissus tricuspidata. Korean J Mycol. 2019;47:271-274.
  6. Hiratsuka N, Chen Z. A list of Uredinales collected from Taiwan. Trans Mycol Soc Japan. 1991;32:3-22.
  7. Cho WD, Shin H-D. List of plant diseases in Korea. 4th ed. Suwon: Korean Society of Plant Pathology; 2004.
  8. Chatasiri S, Ono Y. Phylogeny and taxonomy of the Asian grapevine leaf rust fungus, Phakopsora euvitis, and its allies (Uredinales). Mycoscience. 2008;49(1):66-74. https://doi.org/10.1007/S10267-007-0390-4
  9. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Available at: http://nt.ars-grin.gov/fungaldatabases/. Accessed on Jan 10, 2022. [database on the Internet].
  10. Kolmer JA, Ordonez ME, Groth JV. The rust fungi. Encyclopedia of life sciences (ELS). Chichester: John Wiley & Sons; 2009.
  11. Gerrath J, Posluszny U, Melville L. Taming the wild grape. Botany and horticulture in the Vitaceae. Heidelberg: Springer; 2015.
  12. Ji JX, Li Z, Li Y, et al. Life cycle of Nothoravenelia japonica and its phylogenetic position in Pucciniales, with special reference to the genus Phakopsora. Mycol Prog. 2019;18(6):855-864. https://doi.org/10.1007/s11557-019-01496-0
  13. Pearson RC, Goheen AC. Compendium of grape diseases. St. Paul, Minn.: APS Press; 1988.
  14. Ono Y. Taxonomy of the Phakopsora ampelopsidis species complex on vitaceous hosts in Asia including a new species, P. euvitis. Mycologia. 2000;92(1):154-173. https://doi.org/10.1080/00275514.2000.12061140
  15. Ono Y, Okane I, Chatasiri S, et al. Taxonomy of southeast Asian-Australasian grapevine leaf rust fungus and its close relatives. Mycol Prog. 2020;19(9):905-919. https://doi.org/10.1007/s11557-020-01607-2
  16. Pfunder M, Schurch S, Roy BA. Sequence variation and geographic distribution of pseudoflower-forming rust fungi (Uromyces pisi s. lat.) on Euphorbia cyparissias. Mycol Res. 2001;105(1):57-66. https://doi.org/10.1017/S0953756200003208
  17. Beenken L, Zoller S, Berndt R. Rust fungi on Annonaceae II: the genus Dasyspora berk. & MA curtis. Mycologia. 2012;104(3):659-681. https://doi.org/10.3852/11-068
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  19. Pota S, Chatasiri S, Ono Y, et al. Taxonomy of two host specialized Phakopsora populations on Meliosma in Japan. Mycoscience. 2013;54(1):19-28. https://doi.org/10.1016/j.myc.2012.07.004
  20. Pota S, Chatasiri S, Unartngam J, et al. Taxonomic identity of a Phakopsora fungus causing the grapevine leaf rust disease in Southeast Asia and Australasia. Mycoscience. 2015;56(2):198-204. https://doi.org/10.1016/j.myc.2014.06.003
  21. Ono Y. Phakopsora hornotina, an additional autoecious rust species on Meliosma in the Philippines and the Ryukyu islands, Japan. Mycoscience. 2016;57(1):71-78. https://doi.org/10.1016/j.myc.2015.09.003
  22. Kuprevich V, Tranzschel V. Cryptogamic plants of the USSR. Vol. IV, Rust fungi. No. 1, family Melampsoraceae. Moscow: The Academy of Science U.S.S.R.; 1957.
  23. Ono Y, Adhikari M, Rajbhandari K. Uredinales of Nepal. Reports of the Tottori Mycol Instit. 1990;28:57-75.
  24. Singh A, Palni U. Diversity and distribution of rust fungi in Central Himalayan region. J Phytol. 2011;3:49-59.
  25. Roy BA. Patterns of association between crucifers and their flower-mimic pathogens: host jumps are more common than coevolution or cospeciation. Evolution. 2001;55(1):41-53.
  26. Giraud T, Refregier G, Le Gac M, et al. Speciation in fungi. Fungal Genet Biol. 2008;45(6):791-802. https://doi.org/10.1016/j.fgb.2008.02.001
  27. Giraud T, Gladieux P, Gavrilets S. Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol Evol. 2010;25(7):387-395. https://doi.org/10.1016/j.tree.2010.03.006
  28. McTaggart AR, Shivas RG, van der Nest MA, et al. Host jumps shaped the diversity of extant rust fungi (Pucciniales). New Phytol. 2016;209(3):1149-1158. https://doi.org/10.1111/nph.13686
  29. Thines M. An evolutionary framework for host shifts-jumping ships for survival. New Phytol. 2019;224(2):605-617. https://doi.org/10.1111/nph.16092
  30. Choi Y-J, Thines M. Host jumps and radiation, not co-divergence drives diversification of obligate pathogens. A case study in downy mildews and Asteraceae. PloS One. 2015;10(7):e0133655. https://doi.org/10.1371/journal.pone.0133655