DOI QR코드

DOI QR Code

이동통신 기반 LPWA (Low Power Wade Area) IoT를 위한 용량 증대 방안

The Capacity Increase Scheme for Cellular based LPWA (Low Power Wade Area) IoT

  • 투고 : 2022.05.10
  • 심사 : 2022.06.30
  • 발행 : 2022.08.31

초록

이동통신사 주도의 LPWA(Low Power Wide Area) 기반 IoT 기술은 NB-IoT와 LTE Cat.M1이 상용화되어 서비스되고 있다. LPWA 기반 IoT에 대한 서비스 요구사항이 증가되면서 이러한 서비스 가입자도 증가하고 있는 상황이다. 서비스 초기에는 NB-IoT 및 LTE Cat.M1을 수용하기 위한 기지국 용량에 이슈가 없었으나, 가입자 증가로 하나의 셀에서 수용하기 위한 용량이 부족해지는 문제가 발생하고 있다. 이러한 Active UE 용량 문제는 지속적인 증가로 인한 과부하와 일시적인 증가로 인한 과부하 문제가 발생할 수 있다. 본 논문에서는 기지국에서 NB-IoT 및 LTE Cat.M1 단말의 일시적인 증가로 인해 발생 하는 LTE 접속제어 채널인 RRC(Radio Resource Control) Active UE 용량 부족 및 기지국 과부하 문제를 해결하기 위한 방안을 제시한다. 제시한 방안은 이동통신의 셀 분할 및 추가 기지국 투자 없이 셀 용량을 증대 시킬 수 있는 방안을 제시함으로써, 증가하는 IoT 단말을 수용해 서비스 성능을 개선시킨다.

NB-IoT and LTE Cat.M1 based on LPWA(Low Power Wide Area) are commercialized and serviced by mobile carriers. As the demand for IoT devices is increased, the number of subscribers to these services is also increasing. In the beginning of service, there was no issue that eNB capacity for NB-IoT and LTE Cat.M1. However, as the number of subscribers increases, there is an issue that the eNB capacity for these service is insufficient. Active UE capacity issue may cause overload by continuous increase and temporary increase. In this paper, we propose a solution to solve the problem of LTE RRC(Radio Resource Control) Active UE capacity shortage and base station overload caused by the increase of NB-IoT and LTE Cat.M1 UE in same eNB. The proposed solution can increase a cell capacity without cell division and additional eNB, and can also improve the service quality of these UEs.

키워드

참고문헌

  1. X.Xiong, K.Zheng, R.Xu, W.Xiang, and P.Chatzimisios, "Low power wide area machine-to-machine networks: Key techniques and prototype," IEEE Communications Magazine, Vol.53, No.9, pp.64-71, 2015.
  2. Linklabs, "Low Power, Wide Area Networks," 2015.
  3. SigFox White Paper, "M2M and IoT Redefined Through Cost Effective and Energy Optimized Connectivity," 2015.
  4. www.sigfox.com., 2021.
  5. LoRa Alliance, "LoRaWAN Specification," 2015.
  6. www.lora-alliance.org
  7. Ericsson & NSN, "LTE Evolution for Cellular IoT," 2014.
  8. Nokia, "LTE-M - Optimizing LTE for the Internet of Things," 2015.
  9. 3GPP TSP RAN 69th, "New Work Item: NB-IoT," RP-151621, 2015.
  10. Huawei, "Narrowband cellular-IoT(NB-CIoT)," 3GPP TSG RAN 69th Meetings, RP-151550, 2015.
  11. GSMA, "Emerging Mobile IoT Technologies: Use Cases, Business and Security Requirements," ETSI M2M Workshop, 2015.
  12. S. Andreev, O. Galinina, A. Pyattaev, M. Gerasimenko, T. Tirronen, J. Torsner, J. Sachs, M. Dohler, and Y. Koucheryavy, "Understanding the IoT connectivity landscape: A contemporary M2M radio technology roadmap," IEEE Commun. Mag., Vol.53, No.9, pp.32-40, 2015. https://doi.org/10.1109/MCOM.2015.7263370
  13. IoT Analytics Research, 2021.
  14. G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, "A survey on 5G networks for the internet of things: communication technologies challenges," IEEE Access, Vol.6, pp.3619-3647, 2017. https://doi.org/10.1109/access.2017.2779844
  15. 3GPP TS 32.425, "Performance measurements Evlolved Universal Terrestrial Radio Access Network," Release 13, 2016.
  16. 3GPP TS 23.401, "General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access" Release 15, 2018.
  17. Erik Dahlman, Stefan Parkvall, Johan Skold "4G LTE-Advanced Pro and the Road to 5G", 2019.