DOI QR코드

DOI QR Code

무인이동체 산업의 실제 고장사례에 대한 영향성 분석 및 고장대응기술 적용방안

Influence Analysis of Actual Fault Cases in Unmanned Vehicle Industry and Study on Fault Tolerant Technology

  • 투고 : 2022.04.19
  • 심사 : 2022.07.14
  • 발행 : 2022.09.01

초록

본 논문은 2020년에 실시한 무인이동체 산업실태조사의 드론 고장 발생현황에 대한 설문내용을 분석하여 산업계에서의 고장대응기술의 활용성에 대해 논하고자 한다. 먼저, 국내 무인이동체 산업실태조사 결과를 기반으로 고장률이 높고, 고장 발생 시 심각도가 높은 하위시스템(Subsystem)을 파악한다. 또한 공중 무인이동체를 대상으로 고장률이 높은 부품에 대한 고장 시뮬레이션을 수행한다. 이를 통해 고장이 무인이동체에 미치는 영향에 대해 분석한다. 이후 현재까지 연구된 고장진단 및 고장대응 기법과 연구사례를 소개하며, 무인이동체 산업의 실 고장사례에 적용하기 위한 방안에 대해 논의한다. 나아가 앞서 논의한 내용을 기반으로 고장대응체계를 제시하고, 산업계에서 고장대응체계 설계 시에 고려해야 할 사항에 대해 살펴본다.

This paper discusses the utilization of fault-tolerant technology in the industry by analyzing the status of drone failures in the unmanned vehicle industry survey conducted in 2020. Based on the survey results of the domestic unmanned vehicle industry, we identify subsystems with high fault rates and high severity when faults occur. In addition, fault simulations of the identified subsystems are conducted to analyze the effect of the fault on the vehicles. After that, the fault diagnosis and fault compensation methods studied so far are reviewed, and research cases of the methods are examined. Moreover, the ways to apply it to actual fault cases in the unmanned vehicle industry are debated. Furthermore, based on the previous discussion, the fault-tolerant system is presented, and the consideration when designing the fault-tolerant system in the industry are studied.

키워드

과제정보

본 연구는 과학기술정보통신부의 재원으로 한국연구재단, 무인이동체원천기술개발사업단의 지원을 받아 무인이동체원천기술개발사업을 통해 수행되었음(2020M3C1C1A01083162)

참고문헌

  1. Kang, W. G., Jung, Y. W. and Hwang, I. S., "Key Technologies for Autonomous Unmanned Vehicles: Trends and Future Plans for Future Unmanned Vehicles such as Drones and Autonomous Vehicles," KICS Information and Communication Magazine Open Lecture Series, Vol. 35, No. 1, 2018, pp. 28~35.
  2. Kim, Y. S. and Bae, J. W., "Small UAV Failure Rate Analysis Based on Human Damage on the Ground Considering Flight Over Populated Area," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 49, No. 9, 2021, pp. 781~789.
  3. Nam, H. S., Park, B. S. and Lee, H. T., "Research on the Crash Location and Speed Distribution of Low Altitude Fixed-Wing Aircraft," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 50, No. 1, 2022, pp. 59~66.
  4. Jeong, S. G., Seo, Y. J., Kim, Y. M. and Jun, B. K., "A Study on the Feasibility of Defect Diagnosis using Principal Component Analysis on Aircraft Vibration Data," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 46, No. 9, 2018, pp. 767~773.
  5. KRUAV, "2019 Survey Report on Unmanned Vehicle Industry and Drone Application," 2020, pp. 74~104.
  6. YUZGEC, U., OKTEN, I., UCGUN, H., GUN, A. R., TURKYILMAZ, T., KESLER, M., KARAKUZU, C. and UCAR, G., "Development of the Test Platform for Rotary Wing Unmanned Air Vehicle," Bilecik Seyh Edebali Universitesi Fen Bilimleri, Vol. 3, No. 2, 2016, pp. 18~24.
  7. Kim, T. G., Kim, D. M., Kim, S. K., Kim, Y. S. and Han, S. H., "Improved Optical Sensor Fusion in UAV Navigation Using Feature Point Threshold Filter," International Journal of Aeronautical and Space Sciences, Vol. 23, No. 1, 2022, pp. 157~168. https://doi.org/10.1007/s42405-021-00423-6
  8. Lee, S. M., "A Study of Fault Diagnosis and Fault Prediction using Sensor Output," (Master dissertation), University of Ulsan, Ulsan, Republic of Korea, 2014
  9. Ko, S. H., "Prediction-Diagnosis of Failures/Faults and Control Reconfiguration for Multicopter-type Small UAVs," National Research Foundation of Korea, 2019.
  10. Lee, J. U., Jeon, H. S. and Gwon, D. I., "Trends and Analysis in Domestic and International Fault Diagnosis Research," Journal of the KSME, Vol. 56, No. 11, 2016, pp. 37~40.
  11. Kim, T. G. and Kim, S. K., "Actuator Fault Diagnosis and Counterplan Using Extended Kalman Filter Considering Symmetry of Hexacopter UAV," Journal of Institute of Control, Robotics and Systems, Vol. 27, No. 7, 2021, pp. 473~481. https://doi.org/10.5302/J.ICROS.2021.21.0037
  12. Melody, J. W., Hillbrand, T., Basar, T. and Perkins, W. R., "H∞ Parameter Identification for Inflight Detection of Aircraft Icing: The Time-Varying Case," Control Engineering Practice, Vol. 9, No. 12, 2001, pp. 1327~1335. https://doi.org/10.1016/S0967-0661(01)00081-8
  13. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T. and Vapnik, V., "Feature Selection for SVMs," Advances in neural information processing systems, Vol. 13, 2000.
  14. Shi, Q. and Zhang, H., "Fault Diagnosis of an Autonomous Vehicle with an Improved SVM Algorithm Subject to Unbalanced Datasets," IEEE Transactions on Industrial Electronics, Vol. 68, No. 7, 2020, pp. 6248~6256.
  15. Garcia-Bracamonte, J. E., Ramirez-Cortes, J. M., de Jesus Rangel-Magdaleno, J., Gomez-Gil, P., Peregrina-Barreto, H. and Alarcon-Aquino, V., "An Approach on MCSA-Based Fault Detection Using Independent Component Analysis and Neural Networks," IEEE Transactions on Instrumentation and Measurement, Vol. 68, No. 5, 2019, pp. 1353~1361. https://doi.org/10.1109/TIM.2019.2900143
  16. Kim, M. G., Bae, S. H. and Kim, H. I., "Real-Time 3D-LiDAR Object Detection in Autonomous Vehicle Systems Using Cluster-Based Candidates and Deep Learning," Journal of Institute of Control, Robotics and Systems, Vol. 25, No. 9, 2019, pp. 795~801. https://doi.org/10.5302/J.ICROS.2019.0120
  17. Choi, D. J., Han, J. H., Park, S. U. and Hong, S. K., "Motor Fault Diagnosis in Changed Environments using K-means and CNN," Journal of Institute of Control, Robotics and Systems, Vol. 26, No. 5, 2020, pp. 348~354. https://doi.org/10.5302/J.ICROS.2020.20.0005
  18. Fan, H., Shao, S., Zhang, X., Wan, X., Cao, X. and Ma, H., "Intelligent Fault Diagnosis of Rolling Bearing Using FCM Clustering of EMD-PWVD Vibration Images," IEEE Access, Vol. 8, 2020, pp. 145194~145206. https://doi.org/10.1109/ACCESS.2020.3012559
  19. Jin, J. H., Kang, C. H. and Ko, S. H., "Fault Detection of Receivers and Improvement of Position Estimation Performance by Using Multiple GNSS Receivers," Journal of Institute of Control, Robotics and Systems, Vol. 24, No. 1, 2018, pp. 102~109. https://doi.org/10.5302/J.ICROS.2018.17.0719
  20. Amin, A. A. and Hasan, K. M., "A Review of Fault Tolerant Control Systems: Advancements and Applications," Measurement, Vol. 143, 2019, pp. 58~68. https://doi.org/10.1016/j.measurement.2019.04.083
  21. Abbaspour, A., Mokhtari, S., Sargolzaei, A. and Yen, K. K., "A Survey on Active Fault-Tolerant Control Systems," Electronics, Vol. 9, No. 9, 2020, pp. 1513. https://doi.org/10.3390/electronics9091513
  22. Merheb, A. R., Noura, H. and Bateman, F., "Passive Fault Tolerant Control of Quadrotor UAV Using Regular and Cascaded Sliding Mode Control," 2013 Conference on Control and Fault-Tolerant Systems, October 2013, pp. 330~335.
  23. Wang, X., "Active Fault Tolerant Control for Unmanned Underwater Vehicle With Sensor Faults," IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 12, 2020, pp. 9485~9495. https://doi.org/10.1109/TIM.2020.3003108
  24. Lee, S. H. and Yun, B. D., "Industry 4.0 and Fault Prediction, and Directions in Prognostics and Health Management(PHM)," Journal of KSNVE, Vol. 25, No. 1, 2015, pp. 22~28.