DOI QR코드

DOI QR Code

Design Factor Analysis of Aerospike Pintle Nozzle for Increasing Thrust in Off-Design

탈설계 조건에서 추력 증대를 위한 에어로 스파이크 핀틀 노즐의 설계인자 분석 연구

  • Kim, Jeongjin (Agency for Defense Development, Missile Research Institute, 1st Directorate)
  • 김정진 (국방과학연구소 미사일연구원 1부)
  • Received : 2021.04.13
  • Accepted : 2022.08.17
  • Published : 2022.08.31

Abstract

A design factor analysis was conducted to reduce the thrust reduction in the off-design, due to the driving of the aerospike pintle nozzle. The close (NPR 100) as well as the open (NPR 11) stroke were fixed, as under-expansion conditions. The pintle contour, pintle head radius (R), cowl angle (θ), and cowl exit length (L) were selected as design factors. The change in thrust was analyzed, using a verified numerical analysis technique. First, the pintle head radius and the length of the cowl exit had little influence on the thrust. The cowl angle changed the mass flow rate by affecting the effective nozzle throat area, and created a reverse pressure gradient at the cowl exit. As a result of applying the dual aerospike contour, it was confirmed that the thrust in the design-off increased by approximately 1.2%, compared to the reference case and by approximately 3.4% compared to the worst case.

에어로 스파이크 핀틀 노즐의 구동으로 인한 탈설계 조건에서의 추력 감소를 저감하고자 설계인자 분석 연구를 수행하였다. Close (NPR 100), open (NPR 11) 스트로크 모두 부족팽창 조건으로 고정되었다. 설계인자로 핀틀 형상, 핀틀 헤드 반경 (R), 덮개 각도 (θ), 덮개 출구 길이 (L)를 선정하였다. 검증된 수치해석 기법으로 설계인자로 인한 추력 변화를 분석하였다. 먼저 핀틀 헤드 반경과 덮개 출구 길이는 추력에 미치는 영향이 적었다. 덮개 각도는 유효 노즐목 면적에 영향을 주어 질량 유량을 변화시키고, 덮개 출구에서의 역압력 구배를 생성하였다. 이중 에어로 스파이크 형상을 적용한 결과, 탈설계 조건에서의 추력이 기준 case 대비 약 1.2%, 가장 악조건인 case 대비 약 3.4% 증가하였다.

Keywords

References

  1. J. Heo, K. Jeong, H. Sung, "Numerical Study of the Dynamic Characteristics of Pintle Nozzles for Variable Thrust," Journal of Propulsion and Power, vol. 31, no. 1, pp. 230-237, Jan. 2015. https://doi.org/10.2514/1.B35257
  2. H. Sung, K. Jeong, J. Heo, "Performance characteristics of a pintle nozzle using the conformal sliding mesh technique," Aerospace Science and Technology, vol. 16, pp. 85-94, Feb. 2016.
  3. G. Lee and H. Sung, "Three-dimensional Effects of an Axi-symmetric Pintle Nozzle," Journal of the Korean Society of Propulsion Engineers, vol. 22, no. 6, pp. 47-55, Dec. 2018. https://doi.org/10.6108/KSPE.2018.22.6.047
  4. S. S. Park, Y. Moon, J. S. Kawk, "Numerical Analysis and 2-D Experiment of Heat Transfer Coefficient on the Pintle of a Controllable Thruster Nozzle," Journal of Aerospace System Engineering, vol. 6, no. 4, pp. 24-28, Dec. 2012. https://doi.org/10.20910/JASE.2012.6.4.024
  5. J. Kim, S. Oh, J. Heo, D. Lee, "Analysis of the Flow Characteristics of Plug Nozzle for Cold Air Test with Pintle Shape and Operating Pressure," Journal of the Korean Society of Propulsion Engineers, vol. 23, no. 3, pp. 28-34, June 2018.
  6. J. Kim, "Analysis of the Characteristics of an Aerospike Pintle nozzle in terns of Stroke and Operating Pressure," Journal of Aerospace System Engineering, vol. 14, no. 4, pp. 1-9, Mar. 2020. https://doi.org/10.20910/JASE.2020.14.4.1
  7. S. B. Verma, "Performance Characteristics of an Annular Conical Aerospike Nozzle with Freestream Effect," Journal of Propulsion and Power, vol. 25, no. 3, pp. 783-791, May 2009. https://doi.org/10.2514/1.40302
  8. P. P. Nair, A. Suryan, H. D. Kim, "Study of Conical Aerospike Nozzles with Base-Bleed and Freestream Effects," Journal of Spacecraft and Rockets, vol. 56, no. 4, pp. 990-1005, July 2019. https://doi.org/10.2514/1.A34256