DOI QR코드

DOI QR Code

Guidance to the Praat, a Software for Speech and Acoustic Analysis

음성 및 음향분석 프로그램 Praat의 임상적 활용법

  • Received : 2022.07.05
  • Accepted : 2022.08.16
  • Published : 2022.08.31

Abstract

Praat is a useful analysis tool for linguists, engineers, doctors, speech-language pathologits, music majors, and natural scientists. Basic parameters including duration, pitch, energy and perturbation parameters such as jitter and shimmer can be easily measured and manipulated in the sound editor. When a more in-depth analysis is needed, it is recommended to understand the advanced menus of the object window and learn how to use them. Among the object window menus, vowel formant analysis, spectrum analysis, and cepstrum analysis can be cited as useful ones in the clinical field. The spectrum object can be usefully used for voice quality measurement and diagnosis of patients with voice disorders by showing the energy distribution according to frequency axis (domain). A cepstrum object is useful for speech analysis when periodicity of the sound object is not measurable. The low to high ratio obtained from the spectral object and the CPPs measured from the cepstrum object have attracted many researchers, and it has been proven that the CPPs measured in Praat are relatively excellent.

Keywords

References

  1. Boersma P, Weenink D. Praat: doing phonetics by computer (version 6.1.16 & 6.2.14) [Computer program]. Amsterdam, the Netherlands: University of Amsterdam, Phonetic Sciences Department [updated 2022 May 25; cited 2022 July 4]. Available from: http://www.praat.org/.
  2. Borden G, Harris K. Speech science primer: physiology, acoustics, and perception of speech. Baltimore, MD: Williams & Wilkins;1984.
  3. Escudero P, Boersma P, Rauber AS, Bion RA. A cross-dialect acoustic description of vowels: Brazilian and European Portuguese. J Acoust Soc Am 2009;126(3):1379-93. https://doi.org/10.1121/1.3180321
  4. Yoon TJ, Kang YJ. Monophthong analysis on a large-scale speech corpus of read-style Korean. Phonetics Speech Sci 2014;6(3):139-45. https://doi.org/10.13064/KSSS.2014.6.3.139
  5. Kim JY, Seong CJ. The change of vowel characteristics for the Dysarthric speech along with speaking style. Phonetics Speech Sci 2016;8(3):51-9. https://doi.org/10.13064/KSSS.2016.8.3.051
  6. Yang B. Development of vowel normalization procedures: English and Korean [PhD Dissertation]. Austin (TX): University of Texas at Austin;1990.
  7. Fry DB. The physics of speech. Cambridge: Cambridge University Press;1982. p.71-81.
  8. Park JY, Seong CJ. The implementation of Korean adult's optimal formant setting by Praat scripting. Phonetics Speech Sci 2019;11(4):97-108. https://doi.org/10.13064/KSSS.2019.11.4.097
  9. Park JY, Seong CJ. The implementation of children's automated formant setting by Praat scripting. Phonetics Speech Sci 2018;10(4):1-10. https://doi.org/10.13064/KSSS.2018.10.4.001
  10. Neel AT. Vowel space characteristics and vowel identification accuracy. J Speech Lang Hear Res 2008;51(3):574-85. https://doi.org/10.1044/1092-4388(2008/041)
  11. Sapir S, Ramig LO, Spielman JL, Fox C. Formant centralization ratio: A proposal for a new acoustic measure of dysarthric speech. J Speech Lang Hear Res 2010;53(1):114-25. https://doi.org/10.1044/1092-4388(2009/08-0184)
  12. Skodda S, Visser W, Schlegel U. Vowel articulation in Parkinson's disease. J Voice 2011;25(4):467-72. https://doi.org/10.1016/j.jvoice.2010.01.009
  13. Boersma P. Should jitter be measured by peak picking or by waveform matching? Folia Phoniatr Logop 2009;61(5):305-8. https://doi.org/10.1159/000245159
  14. Ko HJ, Woo MR, Choi YL. Comparisons of voice quality parameter values measured with MDVP, Praat, and TF32. Phonetics Speech Sci 2020;12(3):73-83.
  15. Seo YJ, Shin JY. Acoustic characteristics of the sustained vowel phonation according to age groups. Phonetics Speech Sci 2018;10(4):67-76. https://doi.org/10.13064/KSSS.2018.10.4.067
  16. Jeon HY. A study on the voice fatigue and acoustic characteristics of speech-language pathologists [dissertation]. Daejeon: Chungnam National Univ.;2020.
  17. Forrest K, Weismer G, Hodge M, Dinnsen DA, Elbert M. Statistical analysis of word-initial /k/ and /t/ produced by normal and phonologically disordered children. Clin Linguist Phon 1990;4(4):327-40. https://doi.org/10.3109/02699209008985495
  18. Awan SN, Roy N. Toward the development of an objective index of dysphonia severity: A four-factor acoustic model. Clin Linguist Phon 2006;20(1):35-49. https://doi.org/10.1080/02699200400008353
  19. Lee IA, Seong CJ. Acoustic characteristics and classification variables of patients with breathy voice. Journal of the Linguistic Society of Korea 2020;88:115-34.
  20. Kim GH, Lee YY, Bae IH, Lee JS, Lee CY, Park HJ, et al. Acoustic analysis and auditory-perceptual assessment for diagnosis of functional dysphonia. J Clin Otolaryngol Head Neck Surg 2018;29(2):212-22. https://doi.org/10.35420/jcohns.2018.29.2.212
  21. Theil H. A rank-invariant method of linear and polynomial regression analysis. In: Koninklijke Nederlandse Akademie van Wetenschappen, editor. Proceedings of the section of sciences. Amsterdam: North-Holland;1950. p.1397-412.
  22. Hillenbrand J, Cleveland RA, Erickson RL. Acoustic correlates of breathy vocal quality. J Speech Hear Res 1994;37(4):769-78. https://doi.org/10.1044/jshr.3704.769
  23. Hillenbrand J, Houde RA. Acoustic correlates of breathy vocal quality: Dysphonic voices and continuous speech. J Speech Hear Res 1996;39(2):311-21. https://doi.org/10.1044/jshr.3902.311
  24. Kim NS, Seong CJ. The acoustic characteristics and classification variables of two hyponasal groups. Journal of the Linguistic Society of Korea 2017;78:31-61.
  25. Murton O, Hillman R, Mehta D. Cepstral peak prominence values for clinical voice evaluation. Am J Speech Lang Pathol 2020;29(3):1596-607. https://doi.org/10.1044/2020_AJSLP-20-00001
  26. Kim GH, Lee YW, Park HJ, Bae IH, Kwon SB. A study of cepstral peak prominence characteristics in ADSV, SpeechTool and Praat. J Speech Lang Hear Disord 2017;26(3):99-111.
  27. Sauder C, Bretl M, Eadie T. Predicting voice disorder status from smoothed measures of cepstral peak prominence using Praat and analysis of dysphonia in speech and voice (ADSV). J Voice 2017;31(5):557-66. https://doi.org/10.1016/j.jvoice.2017.01.006
  28. Maryn Y, Corthals P, Van Cauwenberge P, Roy N, De Bodt M. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels. J Voice 2010;24(5):540-55. https://doi.org/10.1016/j.jvoice.2008.12.014
  29. Maryn Y, Morsomme D, De Bodt M. Measuring the dysphonia severity index (DSI) in the program Praat. J Voice 2017;31(5):644.e29-40.
  30. Hillenbrand J. SpeechTool (Ztool), Version 1.56 [Computer program]. Kalamazoo, MI, USA [updated 2006; cited 2022 July 4]. Available from: http://homepages.wmich.edu/~hillenbr/.