References
- Boersma P, Weenink D. Praat: doing phonetics by computer (version 6.1.16 & 6.2.14) [Computer program]. Amsterdam, the Netherlands: University of Amsterdam, Phonetic Sciences Department [updated 2022 May 25; cited 2022 July 4]. Available from: http://www.praat.org/.
- Borden G, Harris K. Speech science primer: physiology, acoustics, and perception of speech. Baltimore, MD: Williams & Wilkins;1984.
- Escudero P, Boersma P, Rauber AS, Bion RA. A cross-dialect acoustic description of vowels: Brazilian and European Portuguese. J Acoust Soc Am 2009;126(3):1379-93. https://doi.org/10.1121/1.3180321
- Yoon TJ, Kang YJ. Monophthong analysis on a large-scale speech corpus of read-style Korean. Phonetics Speech Sci 2014;6(3):139-45. https://doi.org/10.13064/KSSS.2014.6.3.139
- Kim JY, Seong CJ. The change of vowel characteristics for the Dysarthric speech along with speaking style. Phonetics Speech Sci 2016;8(3):51-9. https://doi.org/10.13064/KSSS.2016.8.3.051
- Yang B. Development of vowel normalization procedures: English and Korean [PhD Dissertation]. Austin (TX): University of Texas at Austin;1990.
- Fry DB. The physics of speech. Cambridge: Cambridge University Press;1982. p.71-81.
- Park JY, Seong CJ. The implementation of Korean adult's optimal formant setting by Praat scripting. Phonetics Speech Sci 2019;11(4):97-108. https://doi.org/10.13064/KSSS.2019.11.4.097
- Park JY, Seong CJ. The implementation of children's automated formant setting by Praat scripting. Phonetics Speech Sci 2018;10(4):1-10. https://doi.org/10.13064/KSSS.2018.10.4.001
- Neel AT. Vowel space characteristics and vowel identification accuracy. J Speech Lang Hear Res 2008;51(3):574-85. https://doi.org/10.1044/1092-4388(2008/041)
- Sapir S, Ramig LO, Spielman JL, Fox C. Formant centralization ratio: A proposal for a new acoustic measure of dysarthric speech. J Speech Lang Hear Res 2010;53(1):114-25. https://doi.org/10.1044/1092-4388(2009/08-0184)
- Skodda S, Visser W, Schlegel U. Vowel articulation in Parkinson's disease. J Voice 2011;25(4):467-72. https://doi.org/10.1016/j.jvoice.2010.01.009
- Boersma P. Should jitter be measured by peak picking or by waveform matching? Folia Phoniatr Logop 2009;61(5):305-8. https://doi.org/10.1159/000245159
- Ko HJ, Woo MR, Choi YL. Comparisons of voice quality parameter values measured with MDVP, Praat, and TF32. Phonetics Speech Sci 2020;12(3):73-83.
- Seo YJ, Shin JY. Acoustic characteristics of the sustained vowel phonation according to age groups. Phonetics Speech Sci 2018;10(4):67-76. https://doi.org/10.13064/KSSS.2018.10.4.067
- Jeon HY. A study on the voice fatigue and acoustic characteristics of speech-language pathologists [dissertation]. Daejeon: Chungnam National Univ.;2020.
- Forrest K, Weismer G, Hodge M, Dinnsen DA, Elbert M. Statistical analysis of word-initial /k/ and /t/ produced by normal and phonologically disordered children. Clin Linguist Phon 1990;4(4):327-40. https://doi.org/10.3109/02699209008985495
- Awan SN, Roy N. Toward the development of an objective index of dysphonia severity: A four-factor acoustic model. Clin Linguist Phon 2006;20(1):35-49. https://doi.org/10.1080/02699200400008353
- Lee IA, Seong CJ. Acoustic characteristics and classification variables of patients with breathy voice. Journal of the Linguistic Society of Korea 2020;88:115-34.
- Kim GH, Lee YY, Bae IH, Lee JS, Lee CY, Park HJ, et al. Acoustic analysis and auditory-perceptual assessment for diagnosis of functional dysphonia. J Clin Otolaryngol Head Neck Surg 2018;29(2):212-22. https://doi.org/10.35420/jcohns.2018.29.2.212
- Theil H. A rank-invariant method of linear and polynomial regression analysis. In: Koninklijke Nederlandse Akademie van Wetenschappen, editor. Proceedings of the section of sciences. Amsterdam: North-Holland;1950. p.1397-412.
- Hillenbrand J, Cleveland RA, Erickson RL. Acoustic correlates of breathy vocal quality. J Speech Hear Res 1994;37(4):769-78. https://doi.org/10.1044/jshr.3704.769
- Hillenbrand J, Houde RA. Acoustic correlates of breathy vocal quality: Dysphonic voices and continuous speech. J Speech Hear Res 1996;39(2):311-21. https://doi.org/10.1044/jshr.3902.311
- Kim NS, Seong CJ. The acoustic characteristics and classification variables of two hyponasal groups. Journal of the Linguistic Society of Korea 2017;78:31-61.
- Murton O, Hillman R, Mehta D. Cepstral peak prominence values for clinical voice evaluation. Am J Speech Lang Pathol 2020;29(3):1596-607. https://doi.org/10.1044/2020_AJSLP-20-00001
- Kim GH, Lee YW, Park HJ, Bae IH, Kwon SB. A study of cepstral peak prominence characteristics in ADSV, SpeechTool and Praat. J Speech Lang Hear Disord 2017;26(3):99-111.
- Sauder C, Bretl M, Eadie T. Predicting voice disorder status from smoothed measures of cepstral peak prominence using Praat and analysis of dysphonia in speech and voice (ADSV). J Voice 2017;31(5):557-66. https://doi.org/10.1016/j.jvoice.2017.01.006
- Maryn Y, Corthals P, Van Cauwenberge P, Roy N, De Bodt M. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels. J Voice 2010;24(5):540-55. https://doi.org/10.1016/j.jvoice.2008.12.014
- Maryn Y, Morsomme D, De Bodt M. Measuring the dysphonia severity index (DSI) in the program Praat. J Voice 2017;31(5):644.e29-40.
- Hillenbrand J. SpeechTool (Ztool), Version 1.56 [Computer program]. Kalamazoo, MI, USA [updated 2006; cited 2022 July 4]. Available from: http://homepages.wmich.edu/~hillenbr/.