DOI QR코드

DOI QR Code

Morphological Identification and Phylogenetic Analysis of Laelapin Mite Species (Acari: Mesostigmata: Laelapidae) from China

  • Yang, Huijuan (Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University) ;
  • Yang, Zhihua (School of Public Health, Dali University) ;
  • Dong, Wenge (Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University)
  • Received : 2022.01.25
  • Accepted : 2022.07.06
  • Published : 2022.08.31

Abstract

Laelapinae mites are involved in transmission of microbial diseases between wildlife and humans, with an impact on public health. In this study, 5 mite members in the subfamily Laelapinae (laelapin mites; LM) were morphologically identified by light microscopy, and the phylogenetic relationship of LM was analyzed in combination with the sequence information of part of the LM cytochrome oxidase subunit I (cox1) gene. The morphological identification revealed that 5 mites belonged to the genera Laelaps and Haemolaelaps, respectively. Sequence analysis showed that the ratio of nonsynonymous mutation rate to synonymous mutation rate of LM was less than 1, indicating that the LM cox1 gene had undergone purifying selection. Phylogenetic analysis showed that the Laelapinae is a monophyletic group. The genera Haemolaelaps and Hyperlaelaps did not separated into distinct clades but clustered together with species of the genus Laelaps. Our morphological and molecular analyses to describe the phylogenetic relationships among different genera and species of Laelapinae provide a reference for the improvement and revision of the LM taxonomy system.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China [No. 32060143 and 31660314 to W Dong]. The data that support the findings of this study are available in the National Center for Biotechnology Information (NCBI) at [https://www.ncbi.nlm.nih.gov/], reference number [OL806574, OL806586, OL780835, OL810027, OL810029]. We thank Ting Chen for assistance with an initial phylogenetic tree analysis

References

  1. Teng GF, Wang DQ, Gu YM, Meng YC. Economic Insects Fauna of China. Fasc. 40 Acari: Demanyssoideae. Science Press. Beijing, China. 1993, pp 1-391 (in Chinese).
  2. Lareschi M, Velazco PM. Laelapinae Mites (Acari: Parasitiformes: Laelapidae) Parasitic of Sigmodontine Rodents from Northern Peru, with the Description of a New Species from Akodon- aerosus (Rodentia: Cricetidae: Sigmodontinae). J Parasitol 2013; 99: 189-193. https://doi.org/10.1645/GE-3241.1
  3. Radovsky FJ. The evolution of parasitism and the distribution of some dermanyssoid mites (Mesostigmata) on vertebrate hosts. In Houck MA ed, Mites: Ecological and Evolutionary Analyses of Life-History Patterns. Springer. New York, USA. 1994, pp 186-217.
  4. Martins-Hatano F, Gettinger D, Bergallo HG. Ecology and host specificity of laelapine mites (Acari: Laelapidae) of small mammals in an Atlantic Forest area of Brazil. J Parasitol 2002; 88: 36-40. https://doi.org/10.2307/3285387
  5. Korallo-Vinarskaya NP, Vinarski MV, Khokhlova IS, Shenbrot GI, Krasnov BR. Intraspecific variation of body size in a gamasid mite Laelaps clethrionomydis: environment, geography and host dependence. Parasitol Res 2015; 114: 3767-3774. https://doi.org/10.1007/s00436-015-4606-9
  6. Wharton GW, Cross HF. Studies on the feeding habits of three species of laelaptid mites. J Parasitol 1957; 43: 45-50. https://doi.org/10.2307/3274753
  7. Moro CV, Chauve C, Zenner L. Vectorial role of some dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea). Parasite 2005; 12: 99-109. https://doi.org/10.1051/parasite/2005122099
  8. Krantz GW, Walter DE. A Manual of Acarology. 3rd ed. Texas Tech University Press. Lubbock, USA. 2009, pp 1-812.
  9. Shen,Y, Guan L, Wang D, Gan X. DNA barcoding and evaluation of genetic diversity in cyprinidae fish in the midstream of the Yangtze River. Ecol Evol 2016; 6: 2702-2713. https://doi.org/10.1002/ece3.2060
  10. Hajibabaei M, Singer GA, Hebert PD, Hickey DA. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 2007; 23: 167-172. https://doi.org/10.1016/j.tig.2007.02.001
  11. Young MR, Moraza ML, Ueckermann E, Heylen D, Baardsen LF, Lima-Barbero JF, Gal S, Gavish-Regev E, Gottlieb Y, Roy L, Recht E, Adouzi ME, Palevsky E. Linking morphological and molecular taxonomy for the identification of poultry house, soil, and nest dwelling mites in the Western Palearctic. Scientific Reports 2019; 9: 5784-5791. https://doi.org/10.1038/s41598-019-41958-9
  12. Boore JL. Animal mitochondrial genomes. Nucleic Acids Res 1999; 27: 1767-1780. https://doi.org/10.1093/nar/27.8.1767
  13. Dong WG, Dong YL, Guo XG, Shao RF. Frequent tRNA gene translocation towards the boundaries with control regions contributes to the highly dynamic mitochondrial genome organization of the parasitic lice of mammals. BMC Genomics 2021; 22: 598-615. https://doi.org/10.1186/s12864-021-07859-w
  14. Lin RQ, Qiu LL, Liu GH, Wu XY, Weng YB, Xie WQ, Hou J, Pan H, Yuan ZG, Zou FC, Hu M, Zhu XQ. Characterization of the complete mitochondrial genomes of five Eimeria species from domestic chickens. Gene 2011; 408: 28-33. https://doi.org/10.1016/j.gene.2011.03.004
  15. Krasnov BR, Vinarski MV, Korallo-Vinarskaya NP, Khokhlova IS. Ecological correlates of body size in gamasid mites parasitic on small mammals: abundance and niche breadth. Ecography 2013; 36: 1042-1050. https://doi.org/10.1111/j.1600-0587.2012.00140.x
  16. Zhou CJ, Feng MX, Tang YT, Yang CX, Meng XL, Nie GX. Species diversity of freshwater shrimp in Henan Province, China, based on morphological characters and COI mitochondrial gene. Ecol Evol 2021; 11: 10502-10514. https://doi.org/10.1002/ECE3.7855
  17. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thiere T, Ashton B, Meintjes P, Durmmond A. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28: 1647-1649. https://doi.org/10.1093/bioinformatics/bts199
  18. Xia X. DAMBE 7: new and improved tools for data analysis in molecular biology and evolution. Mol Biol Evol 2018; 25: 1550-1552. https://doi.org/10.1093/molbev/msy073
  19. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009; 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  20. Ronquist F, Teslenko M, van der Mark PVD, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61: 539-542. https://doi.org/10.1093/sysbio/sys029
  21. Rambaut A. FigTree v1.4.4. [Internet]. Available from: http://tree.bio.ed.ac.uk/software/figtree/
  22. Hurst LD. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 2002; 18: 486-487. https://doi.org/10.1016/S0168-9525(02)02722-1
  23. du Toit N, van Vuuren BJ, Matthee S, Matthee CA. Biome specificity of distinct genetic lineages within the four-striped mouse Rhabdomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy. Mol Phylogenet Evol 2012; 65: 75-86. https://doi.org/10.1016/j.ympev.2012.05.036
  24. Engelbrecht A, Matthee S, du Toit N, Matthee CA. Limited dispersal in an ectoparasitic mite, Laelaps giganteus, contributes to significant phylogeographic congruence with the rodent host, Rhabdomys. Mol Ecol 2016; 25: 1006-1021. https://doi.org/10.1111/mec.13523
  25. Zachvatkin AA. Organization of the genus Laelaps (Acarina, Parasitiformes) and the question of its epidemiological significance. Parazitologicheskii Sbornik 1948; 10: 50-75 (in Russian).
  26. Shahdadi A, Schubart CD. Taxonomic review of Perisesarma (Decapoda: Brachyura: Sesarmidae) and closely related genera based on morphology and molecular phylogenetics: new classification, two new genera and the questionable phylogenetic value of the epibranchial tooth. Zool J Linn Soc 2018; 182: 517-548. https://doi.org/10.1093/zoolinnean/zlx032