DOI QR코드

DOI QR Code

NEWLY DISCOVERED z ~ 5 QUASARS BASED ON DEEP LEARNING AND BAYESIAN INFORMATION CRITERION

  • Shin, Suhyun (SNU Astronomy Research Center, Astronomy Program, Dept. of Physics & Astronomy, Seoul National University) ;
  • Im, Myungshin (SNU Astronomy Research Center, Astronomy Program, Dept. of Physics & Astronomy, Seoul National University) ;
  • Kim, Yongjung (Department of Astronomy and Atmospheric Sciences, College of Natural Sciences, Kyungpook National University) ;
  • Jiang, Linhua (Kavli Institute for Astronomy and Astrophysics, Peking University)
  • 투고 : 2022.05.23
  • 심사 : 2022.07.24
  • 발행 : 2022.08.31

초록

We report the discovery of four quasars with M1450 ≳ -25.0 mag at z ~ 5 and supermassive black hole mass measurement for one of the quasars. They were selected as promising high-redshift quasar candidates via deep learning and Bayesian information criterion, which are expected to be effective in discriminating quasars from the late-type stars and high-redshift galaxies. The candidates were observed by the Double Spectrograph on the Palomar 200-inch Hale Telescope. They show clear Lyα breaks at about 7000-8000 Å, indicating they are quasars at 4.7 < z < 5.6. For HSC J233107-001014, we measure the mass of its supermassive black hole (SMBH) using its C IV λ1549 emission line. The SMBH mass and Eddington ratio of the quasar are found to be ~108 M and ~0.6, respectively. This suggests that this quasar possibly harbors a fast growing SMBH near the Eddington limit despite its faintness (LBol < 1046 erg s-1). Our 100% quasar identification rate supports high efficiency of our deep learning and Bayesian information criterion selection method, which can be applied to future surveys to increase high-redshift quasar sample.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (NRF) grants No. 2020R1A2C3011091 and No. 2021M3F7A1084525, funded by the Ministry of Science and ICT (MSIT). S. S. acknowledges the support from the Basic Science Research Program through the NRF funded by the Ministry of Education (No. 2020R1A6A3A13069198). Y. K. was supported by the NRF grant funded by the MSIT (No. 2021R1C1C2091550). He acknowledges the support from the China Postdoc Science General (2020M670022) and Special (2020T130018) Grants funded by the China Postdoctoral Science Foundation. This research uses data obtained through the Telescope Access Program (TAP) (PID: CTAP2020-B0043 and CTAP2021-A0032), which has been funded by the National Astronomical Observatories of China, the Chinese Academy of Sciences, and the Special Fund for Astronomy from the Ministry of Finance. Observations obtained with the Hale Telescope at Palomar Observatory were obtained as part of an agreement between the National Astronomical Observations, Chinese Academy of Sciences, and the California Institute of Technology. The Hyper Suprime-Cam (HSC) collaboration includes the astronomical communities of Japan and Taiwan, and Princeton University. The HSC instrumentation and software were developed by the National Astronomical Observatory of Japan (NAOJ), the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), the University of Tokyo, the High Energy Accelerator Research Organization (KEK), the Academia Sinica Institute for Astronomy and Astrophysics in Taiwan (ASIAA), and Princeton University. Funding was contributed by the FIRST program from the Japanese Cabinet Office, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Japan Society for the Promotion of Science (JSPS), Japan Science and Technology Agency (JST), the Toray Science Foundation, NAOJ, Kavli IPMU, KEK, ASIAA, and Princeton University. This paper makes use of software developed for the Large Synoptic Survey Telescope. We thank the LSST Project for making their code available as free software at http://dm.lsst.org. This paper is based on data collected at the Subaru Telescope and retrieved from the HSC data archive system, which is operated by the Subaru Telescope and Astronomy Data Center (ADC) at National Astronomical Observatory of Japan. Data analysis was in part carried out with the cooperation of Center for Computational Astrophysics (CfCA), National Astronomical Observatory of Japan. The Subaru Telescope is honored and grateful for the opportunity of observing the Universe from Maunakea, which has the cultural, historical and natural significance in Hawaii.

참고문헌

  1. Aihara, H., AlSayyad, Y., Ando, M., et al. 2019, Second data release of the Hyper Suprime-Cam Subaru Strategic Program, PASJ, 71, 114
  2. Akiyama, M., He, W., Ikeda, H., et al. 2018, The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey, PASJ, 70, S34
  3. Allard, F., Homeier, D., Freytag, B., et al. 2013, Progress in modeling very low mass stars, brown dwarfs, and planetary mass objects, Memorie della Societa Astronomica Italiana Supplementi, 24, 128
  4. Banados, E., Venemans, B. P., Mazzucchelli, C., et al. 2018, An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5, Nature, 553, 473
  5. Chaves-Montero, J., Bonoli, S., Salvato, M., et al. 2017, ELDAR, a new method to identify AGN in multi-filter surveys: the ALHAMBRA test case, MNRAS, 472, 2085
  6. Coatman, L., Hewett, P. C., Banerji, M., et al. 2017, Correcting CIV-based virial black hole masses, MNRAS, 465, 2120
  7. Coupon, J., Czakon, N., Bosch, J., et al. 2018, The bright-star masks for the HSC-SSP survey, PASJ, 70, S7
  8. Dark Energy Survey Collaboration, Abbott, T., Abdalla, F. B., et al. 2016, The Dark Energy Survey: more than dark energy - an overview, MNRAS, 460, 1270
  9. De Rosa, G., Decarli, R., Walter, F., et al. 2011, Evidence for Non-evolving Fe ii/Mg ii Ratios in Rapidly Accreting z ~ 6 QSOs, ApJ, 739, 56
  10. Fan, X., Strauss, M. A., Richards, G. T., et al. 2006, Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ~ 6 Quasars. II. A Sample of 19 Quasars, AJ, 131, 1203
  11. Foreman-Mackey, D., Hogg, D. W., Lang, D., et al. 2013, emcee: The MCMC Hammer, PASP, 125, 306
  12. Greene, J. E., Strader, J., & Ho, L. C. 2020, Intermediate-Mass Black Holes, ARA&A, 58, 257
  13. Gwyn, S. D. J. 2012, The Canada-France-Hawaii Telescope Legacy Survey: Stacked Images and Catalogs, AJ, 143, 38
  14. Hickox, R. C. & Alexander, D. M. 2018, Obscured Active Galactic Nuclei, ARA&A, 56, 625
  15. Ikeda, H., Nagao, T., Matsuoka, K., et al. 2017, An Optically Faint Quasar Survey at z ~ 5 in the CFHTLS Wide Field: Estimates of the Black Hole Masses and Eddington Ratios, ApJ, 846, 57
  16. Inoue, A. K., Shimizu, I., Iwata, I., et al. 2014, An updated analytic model for attenuation by the intergalactic medium, MNRAS, 442, 1805
  17. Jeon, Y., Im, M., Kim, D., et al. 2017, The Infrared Medium-deep Survey. III. Survey of Luminous Quasars at 4.7 ≤ z ≤ 5.4, ApJS, 231, 16
  18. Jiang, L., Fan, X., Vestergaard, M., et al. 2007, Gemini Near-Infrared Spectroscopy of Luminous z ~ 6 Quasars: Chemical Abundances, Black Hole Masses, and Mg II Absorption, AJ, 134, 1150
  19. Jiang, L., McGreer, I. D., Fan, X., et al. 2016, The Final SDSS High-redshift Quasar Sample of 52 Quasars at z > 5.7, ApJ, 833, 222
  20. Jun, H. D., Im, M., Lee, H. M., et al. 2015, Rest-frame Optical Spectra and Black Hole Masses of 3 < z < 6 Quasars, ApJ, 806, 109
  21. Kaiser, N., Burgett, W., Chambers, K., et al. 2010, The Pan-STARRS wide-field optical/NIR imaging survey, Proc. SPIE, 7733, 77330E
  22. Kim, Y., Im, M., Jeon, Y., et al. 2018, The Infrared Medium-deep Survey. IV. The Low Eddington Ratio of A Faint Quasar at z ~ 6: Not Every Supermassive Black Hole is Growing Fast in the Early Universe, ApJ, 855, 138
  23. Kim, Y., Im, M., Jeon, Y., et al. 2019, The Infrared Medium-deep Survey. VI. Discovery of Faint Quasars at z ~ 5 with a Medium-band-based Approach, ApJ, 870, 86
  24. Kim, Y., Im, M., Jeon, Y., et al. 2020, The Infrared Medium-deep Survey. VIII. Quasar Luminosity Function at z ~ 5, ApJ, 904, 111
  25. Leauthaud, A., Massey, R., Kneib, J.-P., et al. 2007, Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements, ApJS, 172, 219
  26. Liddle, A. R. 2007, Information criteria for astrophysical model selection, MNRAS, 377, L74
  27. Lusso, E., Worseck, G., Hennawi, J. F., et al. 2015, The first ultraviolet quasar-stacked spectrum at z ≃ 2.4 from WFC3, MNRAS, 449, 4204
  28. Matsuoka, Y., Iwasawa, K., Onoue, M., et al. 2018, Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). IV. Discovery of 41 Quasars and Luminous Galaxies at 5.7 ≤ z ≤ 6.9, ApJS, 237, 5
  29. Matsuoka, Y., Strauss, M. A., Kashikawa, N., et al. 2018, Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at z = 6, ApJ, 869, 150
  30. Matsuoka, Y., Onoue, M., Kashikawa, N., et al. 2019, Discovery of the First Low-luminosity Quasar at z > 7, ApJL, 872, L2
  31. Marziani, P., del Olmo, A., Martinez-Carballo, M. A., et al. 2019, Black hole mass estimates in quasars. A comparative analysis of high- and low-ionization lines, A&A, 627, A88
  32. Mazzucchelli, C., Banados, E., Venemans, B. P., et al. 2017, Physical Properties of 15 Quasars at z ≳ 6.5, ApJ, 849, 91
  33. McGreer, I. D., Jiang, L., Fan, X., et al. 2013, The z = 5 Quasar Luminosity Function from SDSS Stripe 82, ApJ, 768, 105
  34. McGreer, I. D., Fan, X., Jiang, L., et al. 2018, The Faint End of the z = 5 Quasar Luminosity Function from the CFHTLS, AJ, 155, 131
  35. Mortlock, D. J., Warren, S. J., Venemans, B. P., et al. 2011, A luminous quasar at a redshift of z = 7.085, Nature, 474, 616
  36. Niida, M., Nagao, T., Ikeda, H., et al. 2020, The Faint End of the Quasar Luminosity Function at z ~ 5 from the Subaru Hyper Suprime-Cam Survey, ApJ, 904, 89
  37. Oke, J. B. & Gunn, J. E. 1983, Secondary standard stars for absolute spectrophotometry, ApJ, 266, 713
  38. Onoue, M., Kashikawa, N., Matsuoka, Y., et al. 2019, Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). VI. Black Hole Mass Measurements of Six Quasars at 6.1 ≤ z ≤ 6.7, ApJ, 880, 77
  39. Paris, I., Petitjean, P., Aubourg, E., et al. 2018, The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release, A&A, 613, A51
  40. Prochaska, J. X., Hennawi, J., Westfall, K., et al. 2020, PypeIt: The Python Spectroscopic Data Reduction Pipeline (v1.3), Zenodo:4323006
  41. Prochaska, J., Hennawi, J., Westfall, K., et al. 2020, PypeIt: The Python Spectroscopic Data Reduction Pipeline, The Journal of Open Source Software, 5, 2308
  42. Reed, S. L., McMahon, R. G., Martini, P., et al. 2017, Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations, MNRAS, 468, 4702
  43. Runnoe, J. C., Brotherton, M. S., & Shang, Z. 2012, Updating quasar bolometric luminosity corrections, MNRAS, 422, 478
  44. Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds, ApJ, 500, 525
  45. Selsing, J., Fynbo, J. P. U., Christensen, L., et al. 2016, An X-Shooter composite of bright 1 < z < 2 quasars from UV to infrared, A&A, 585, A87
  46. Shin, S., Im, M., Kim, Y., et al. 2020, The Infrared Medium-deep Survey. VII. Faint Quasars at z ~ 5 in the ELAIS-N1 Field, ApJ, 893, 45
  47. Shin, S., Im, M., & Kim, Y. 2022, The quasar luminosity function at z ~ 5 via deep learning and Bayesian information criterion, ApJ, in press
  48. Shen, Y., Richards, G. T., Strauss, M. A., et al. 2011, A Catalog of Quasar Properties from Sloan Digital Sky Survey Data Release 7, ApJS, 194, 45
  49. Shen, Y., Wu, J., Jiang, L., et al. 2019, Gemini GNIRS Near-infrared Spectroscopy of 50 Quasars at z ≳ 5.7, ApJ, 873, 35
  50. Sulentic, J. W., del Olmo, A., Marziani, P., et al. 2017, What does CIV λ1549 tell us about the physical driver of the Eigenvector quasar sequence?, A&A, 608, A122
  51. Trakhtenbrot, B., Netzer, H., Lira, P., et al. 2011, Black Hole Mass and Growth Rate at z ≃ 4.8: A Short Episode of Fast Growth Followed by Short Duty Cycle Activity, ApJ, 730, 7
  52. Trakhtenbrot, B., Volonteri, M., & Natarajan, P. 2017, On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars, ApJL, 836, L1
  53. Vestergaard, M. & Peterson, B. M. 2006, Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships, ApJ, 641, 689
  54. Wang, F., Yang, J., Fan, X., et al. 2021, A Luminous Quasar at Redshift 7.642, ApJL, 907, L1
  55. Willott, C. J., Albert, L., Arzoumanian, D., et al. 2010, Eddington-limited Accretion and the Black Hole Mass Function at Redshift 6, AJ, 140, 546
  56. Woo, J.-H., Schulze, A., Park, D., et al. 2013, Do Quiescent and Active Galaxies Have Different MBH Relations?, ApJ, 772, 49
  57. Yang, J., Wang, F., Fan, X., et al. 2020, Poniua'ena: A Luminous z = 7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole, ApJL, 897, L14
  58. Yang, J., Wang, F., Fan, X., et al. 2020, Measurements of the z ~ 6 Intergalactic Medium Optical Depth and Transmission Spikes Using a New z > 6.3 Quasar Sample, ApJ, 904, 26
  59. Zuo, W., Wu, X.-B., Fan, X., et al. 2020, CIV Emission-line Properties and Uncertainties in Black Hole Mass Estimates of z ~ 3.5 Quasars, ApJ, 896, 40