Acknowledgement
이 연구는 2022년 한국외국어대학교 교내연구비 지원을 받아 수행되었음.
References
- Akande O, Li F, and Reiter J (2017). An empirical comparison of multiple imputation methods for categorical data, The American Statistician, 71, 162-170. https://doi.org/10.1080/00031305.2016.1277158
- Berge E, Kim JK, and Skinner C (2016). Imputation under informative sampling, Journal of Survey Statistics and Methodology, 4, 436-462. https://doi.org/10.1093/jssam/smw032
- Bethlehem J (2020). Working with response probabilities, Journal of Official Statistics, 36, 647-674. https://doi.org/10.2478/jos-2020-0033
- Chung HY and Shin KI (2017). Estimation using informative sampling technique when response rate follows exponential function of variable of interest, Korean Journal of Applied Statistics, 30, 993-1004. https://doi.org/10.5351/KJAS.2017.30.6.993
- Chung HY and Shin KI (2019). Bias adjusted estimation in a sample survey with linear response rate, Korean Journal of Applied Statistics, 32, 631-642. https://doi.org/10.5351/KJAS.2019.32.4.631
- Chung HY and Shin KI (2020). A study on non-response bias adjusted estimation in business survey, Korean Journal of Applied Statistics, 33, 11-23. https://doi.org/10.5351/KJAS.2020.33.1.011
- Chung HY and Shin KI (2022). A response probability estimation for non-ignorable non-response, Communications for Statistical Application and Methods, 29, 263-275. https://doi.org/10.29220/CSAM.2022.29.2.263
- Finch WH (2010). Imputation methods for missing categorical questionnaire, Journal of Data Science, 8, 361-378. https://doi.org/10.6339/JDS.2010.08(3).612
- Hong S and Lynn HS (2020). Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity and interaction, BMC Medical Research Methodology, 20:199.
- Iannacchinoe VG, Milne JG, and Folsom RE (1991). Response probability weight adjustment using logistic regression, Proceedings of the Survey Research Methods Section, American Statistical Association, 637-642.
- Laaksonen S (2016). Multiple imputation for a continuous variable, Journal of Mathematics and Statistical Science, 2016, 624-643.
- Lee H and Song J (2017), Comparison of imputation methods for item nonresponse in a panel study, The Korean Journal of Applied Statistics, 30, 377-390. https://doi.org/10.5351/KJAS.2017.30.3.377
- Lin WC and Tsai CF (2020). Missing value imputation: a review and analysis of the literature(2006-2017), Artificial Intelligence Review, 53, 1487-1509. https://doi.org/10.1007/s10462-019-09709-4
- Park KH, Cho H, and Song CJ (2015). Non-response imputation of the culture, sports and tourism labor force survey, Journal of the Korean Data Analysis Society, 17, 1969-1981.
- Quintero M and LeBoulluec A (2018). Missing data imputation for ordinal data, International Journal of Computer Applications, 81, 10-16. https://doi.org/10.5120/ijca2018917522
- Schmitt P, Mandel J, and Guedj M (2015). A comparison of six methods for missing data imputation, Journal of Biometrics & Biostatistics, 6:224.
- Song J (2014). A comparison of imputation methods for multiple response questions, Journal of the Korean Data Analysis Society, 16, 691-791.
- Sim JY and Shin KI (2021). Bias corrected non-response estimation using nonparametric function estimation of super population model, Korean Journal of Applied Statistics, 34, 923-936. https://doi.org/10.5351/KJAS.2021.34.6.923
- Pfeffermann D, Krieger AM, and Rinott Y (1998). Parametric distributions of complex survey data under informative probability sampling, Statistica Sinica, 8, 1087-1114.
- Pfeffermann D and SverchkovM(2003). Small area estimation under informative sampling, 2003 Joint Statistical Meeting-Section on Survey Research Methods, 3284-3295.
- Thomas T and Rajabi E (2021). A systematic review of machine learning-based missing value imputation techniques, Data Technologies and Applications, 55, 558-585. https://doi.org/10.1108/DTA-12-2020-0298