DOI QR코드

DOI QR Code

두꺼운 꼬리 분포와 레버리지효과를 포함하는 확률변동성모형에 대한 최우추정: HMM근사를 이용한 최우추정

Maximum likelihood estimation of stochastic volatility models with leverage effect and fat-tailed distribution using hidden Markov model approximation

  • 김태형 (서울대학교 경제학과) ;
  • 박정민 (한밭대학교 융합경영학과)
  • Kim, TaeHyung (Department of Economics, Seoul National University) ;
  • Park, JeongMin (Department of Business Administration, Hanbat National University)
  • 투고 : 2022.04.11
  • 심사 : 2022.06.21
  • 발행 : 2022.08.31

초록

두꺼운 꼬리 분포와 레버리지효과 등의 금융시계열의 전형적인 특징에도 불구하고 기존 빈도론적 접근법에서는 이를 명시적으로 포착하는 확률변동성모형이 제시된 바 없다. 본 연구는 빈도론적 접근법에서 수익률 금융시계열의 두꺼운 꼬리 분포와 레버리지효과를 명시적으로 포착할 수 있는 근사적인 확률변동성모형 설정을 제시하고 이에 대한 Langrock 등 (2012)의 HMM근사를 이용한 최우추정을 제안한다. 본 연구는 다양한 모의실험과 실증분석을 통해 본 연구에서 제안하는 근사모형이 두꺼운 꼬리 분포와 레버리지효과를 정밀하고 효과적으로 추정할 수 있음을 보인다.

Despite the stylized statistical features of returns of financial returns such as fat-tailed distribution and leverage effect, no stochastic volatility models that can explicitly capture these features have been presented in the existing frequentist approach. we propose an approximate parameterization of stochastic volatility models that can explicitly capture the fat-tailed distribution and leverage effect of financial returns and a maximum likelihood estimation of the model using Langrock et al. (2012)'s hidden Markov model approximation in a frequentist approach. Through extensive simulation experiments and an empirical analysis, we present the statistical evidences validating the efficacy and accuracy of proposed parameterization.

키워드

참고문헌

  1. Abanto-Valle CA, Langrock R, Chen MH, and Cardoso MV (2017). Maximum likelihood estimation for stochastic volatility in mean models with heavy-tailed distributions, Applied Stochastic Models in Business and Industry, 33, 394-408
  2. Andrieu C, Doucet A, and Holenstein R (2010). Particle Markov chain Monte Carlo methods, Journal of the Royal Statistical Society: Series B, 72(3), 269-342. https://doi.org/10.1111/j.1467-9868.2009.00736.x
  3. Asai M and McAleer M (2005). Dynamic asymmetric leverage in stochastic volatility models, Econometric Reviews, 24(3), 317-332. https://doi.org/10.1080/07474930500243035
  4. Asai M and McAleer M (2006). Asymmetric multivariate stochastic volatility, Econometric Reviews, 25(2-3), 453-473. https://doi.org/10.1080/07474930600712913
  5. Asai M and McAleer M (2011). Alternative asymmetric stochastic volatility models, Econometric Reviews, 30, 548-564. https://doi.org/10.1080/07474938.2011.553156
  6. Bartolucci F and De Luca G (2001). Maximum likelihood estimation of a latent variable time-series model, Applied Stochastic Models in Business and Industry, 17, 5-17. https://doi.org/10.1002/asmb.426
  7. Bartolucci F and De Luca G (2003). Likelihood-based inference for asymmetric stochastic volatility models, Computational Statistics and Data Analysis, 42, 445-449. https://doi.org/10.1016/S0167-9473(02)00215-3
  8. Black F and Scholes M (1973). The pricing of options and corporate liabilities, Journal of Political Economy, 81, 637-654. https://doi.org/10.1086/260062
  9. Bos CS (2012). Relating Stochastic Volatility Estimation Methods, In: L Bauwens, CM Hafner and S Laurent (Ed.), Handbook of Volatility Models and Applications, Wiley & Sons, 147-174.
  10. Broto C and Ruiz E (2004). Estimation Methods for Stochastic Volatility Models: A Survey, Journal of Economic Surveys. 18(5), 613-649. https://doi.org/10.1111/j.1467-6419.2004.00232.x
  11. Christie A (1982). The stochastic behavior of common stock variance value, leverage and interest rate effects, Journal of Financial Economics, 10, 407-432. https://doi.org/10.1016/0304-405X(82)90018-6
  12. FridmanMand Harris L (1998). A Maximum Likelihood Approach for Non-Gaussian Stochastic Volatility Models, Journal of Business and Economic Statistics, 16, 284-291.
  13. Geweke J (1992). Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments, in JO Berger, JM Bernardo, AP Dawid, and AFM Smith (Ed.), Bayesian Statistics 4, 169-194.
  14. Hamilton J (1994). Time Series Analysis. Princeton University Press, Hamilton, Princeton, NJ.
  15. Hong Y and Li H (2005). Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates, Review of Financial Studies, 18, 37-84. https://doi.org/10.1093/rfs/hhh006
  16. Jacquier E, Polson NG, and Rossi PE (2004). Bayesian Analysis of Stochastic Volatility Models with Leverage Effect and Fat tails, Journal of Econometrics, 122, 185-212. https://doi.org/10.1016/j.jeconom.2003.09.001
  17. Kim T and Park J (2017). Bayesian Model Comparison for Stochastic Volatility Models of Short Term Interest Rates. Journal of Money and Finance, 31(3), 179-233. https://doi.org/10.21023/JMF.31.3.6
  18. Kitagawa G (1987). Non-Gaussian State-Space Modeling of Nonstationary Time Series (with discussion), Journal of American Statistical Association, 82, 1032-1063.
  19. Langrock R, MacDonald IL, and Zucchini W (2012). Some nonstandard stochastic volatility models and their estimation using structured hidden Markov Models, Journal of Empirical Finance, 19, 147-161. https://doi.org/10.1016/j.jempfin.2011.09.003
  20. Lindsten F, Jordan MI, and Schon TB (2014). Particle Gibbs with Ancestor Sampling, Journal of Machine Learning Research, 15, 2145-2184.
  21. Malik S and Pitt MK (2011). Particle filters for continuous likelihood evaluation and maximisation, Journal of Econometrics, 165, 190-209. https://doi.org/10.1016/j.jeconom.2011.07.006
  22. Mao X, Czellar V, Ruiz E, and Veiga H (2020). Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation, Econometrics and Statistics, 13, 84-105. https://doi.org/10.1016/j.ecosta.2019.08.002
  23. Omori Y, Chib S, Shephard N, and Nakajima J (2007). Stochastic volatility with leverage: fast likelihood inference, Journal of Econometrics, 140, 425-449. https://doi.org/10.1016/j.jeconom.2006.07.008
  24. Silverman BW (1986). Density Estimation. Chapman and Hall, London.
  25. Pitt MK, Malik S, and Doucet A (2014). Simulated likelihood inference for stochastic volatility models using particle filtering, Annals of the Institute of Statistical Mathematics, 66(3), 527-552. https://doi.org/10.1007/s10463-014-0456-y
  26. Rivers D and Vuong Q (2002). Model selection tests for nonlinear dynamic models, Econometrics Journal, 5, 1-39. https://doi.org/10.1111/1368-423X.t01-1-00071
  27. Rosenblatt M (1952). Remarks on a Multivariate Transformation, Annals of Mathematical Statistics, 23, 470-472. https://doi.org/10.1214/aoms/1177729394
  28. Taylor SJ (1982). Financial returns modelled by the product of two stochastic processes - a study of the daily sugar prices 1961-75, In: OD Anderson (Ed.), Time Series Analysis: Theory and Practice 1, North-Holland, Amsterdam, 203-226.
  29. Taylor SJ (1984). Modelling Financial Time Series, Wiley, Chichester.
  30. Yu J (2012). Simulation-Based Estimation Methods for Financial Time Series Models, In: JC Chuan, WK hardle, and HE Gentle (Ed.), Handbooks of Computational Finance, Springer, 401-435.
  31. ZucchiniWand MacDonald IL (2009). Hidden Markov Models for Time Series: An Introduction Using R, Chapman and Hall/CRC Press, London and Boca Raton.