과제정보
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(NRF-2020R1G1A1100798) and vehicle AI Convergence Research & Development Program through the National IT Industry Promotion Agency of Korea(NIPA) funded by the Ministry of Science and ICT(No. S0315-21-1001)
참고문헌
- J. Liu, S. Zhang, S. Wang, D. N. Metaxas, "Multispectral Deep Neural Networks for Pedestrian Detection," in Proceedings of the British Machine Vision Conference, York, U.K, pp. 13, 2016.
- K. Park, S. Kim, and K. Sohn, "Unified multi-spectral pedestrian detection based on probabilistic fusion networks," Pattern Recognition, vol. 80, pp. 143-155, Aug. 2018. https://doi.org/10.1016/j.patcog.2018.03.007
- C. Li, D. Song, R. Tong, and M. Tang, "Multispectral Pedestrian Detection Via Simultaneous Detection and Segmentation," in Proceedings of the British Machine Vision Conference, Hangzhou, China, pp. 225, 2018.
- C. Li, D. Song, R. Tong, and M. Tang, "Illumination-aware faster R-CNN for robust multispectral pedestrian detection," Pattern Recognition, vol. 85, pp. 161-171, Jan. 2019. https://doi.org/10.1016/j.patcog.2018.08.005
- L. Zhang, Z. Liu, S. Zhang, X. Yang, H. Qiao, K. Huang, and A. Hussain, "Cross-modality interactive attention network for multispectral pedestrian detection," Information Fusion, vol. 50, pp. 20-29, 2019. https://doi.org/10.1016/j.inffus.2018.09.015
- H. Zhang, E. Fromont, S. Lefevre, and B. Avignon, "Multispectral Fusion for Object Detection with Cyclic Fuse-and-Refine Blocks," in Proceedings of the International Conference on Image Processing, Abu Dhabi, United Arab Emirates, pp. 276-280, 2020.
- H. Zhang, E. Fromont, S. Lefevre, and B. Avignon, "Guided Attentive Feature Fusion for Multispectral Pedestrian Detection," in Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Waikoloa: HI, USA, pp. 72-80, 2021.
- Y. Chen, J. Shi, Z. Ye, C. Mertz, D. Ramanan, and S. Kong, "Multimodal object detection via bayesian fusion," arXiv preprint arXiv:2104.02904, 2021.
- M. Sharma, M. Dhanaraj, S. Karnam, D. G. Chachlakis, R. Ptucha, P. P. Markopoulos, and E. Saber, "YOLOrs: sObject detection in multimodal remote sensing imagery," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 1497-1508, Nov. 2021. https://doi.org/10.1109/JSTARS.2020.3041316
- H. Perreault, G. Bilodeau, N. Saunier, and M. Heritier, "FFAVOD: Feature fusion architecture for video object detection," Pattern Recognition Letter, vol. 151, pp. 294-301, Nov. 2021. https://doi.org/10.1016/j.patrec.2021.09.002
- R. Guo, D. Li, and Y. Han, "Deep multi-scale and multi-modal fusion for 3d object detection," Pattern Recognition Letter, vol. 151, pp. 236-242, Nov. 2021. https://doi.org/10.1016/j.patrec.2021.08.028
- F. Team, et al., Free flir thermal dataset for algorithm training [Internet]. Available: https://www.flir.com/oem/adas/adas-dataset- form/.
- X. Jia, C. Zhu, M. Li, W. Tang, and W. Zhou, "LLVIP: A Vi sible-infrared Paired Dataset for Low-light Vision," in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3496-3504, Montreal: BC, Canada, 2021.
- G. Jocher, K. Nishimura, T. Mineeva, R. Vilarino, YOLOv5, Jul, 2020 [Internet]. Available: https://github.com/ultralytics/yolov5.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas: NV, USA, pp. 770-778, 2016.
- S. J. Lee, J. S. Yun, and S. B. Yoo, "Alternative collaborative learning for character recognition in low-resolution images," IEEE Access, vol. 10, pp. 22003- 22017, Feb. 2022. https://doi.org/10.1109/ACCESS.2022.3153116
- R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colombus: OH, USA, pp. 580-587, 2014.
- S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, Jun. 2017. https://doi.org/10.1109/TPAMI.2016.2577031
- W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg, "SSD: Single Shot Multibox Detector," in Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, vol. 9905, pp. 21-37, 2016.
- J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas: NV, USA, pp. 779-788, 2016.
- S. J. Lee and S. B. Yoo, "Super-resolved recognition of license plate characters," Mathematics, vol. 9, no. 19, pp. 2494(1)-2494(19), Oct. 2021.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention Is All You Need," in Proceedings of the Neural Information Processing Systems, pp. 5998-6008, 2017.
- F. Qingyun, H. Dapeng, and W. Zhaokui, "Cross-Modality Fusion Transformer for Multispectral Object Detection," arXiv preprint arXiv:2111.00273, 2021.
- J. Wagner, V. Fischer, M. Herman, and S. Behnke, "Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks," in Proceedings of the 24th European Symposium on Artificial Neural Networks, Bruges, Belgium, pp. 509-514, 2016.
- L. Zhang, X. Zhu, X. Chen, X. Yang, Z. Lei, and Z. Liu, "Weakly Aligned Cross-Modal Learning for Multispectral Pedestrian Detection," in Proceedings of the IEEE/CVF International Conference on Computer Vision, Seou, Korea, pp. 5126-5136, 2019.
- Y. Zheng, I. H. Izzat, and S. Ziaee, "GFD-SSD: Gated Fusion Double SSD for Multispectral Pedestrian Detection," arXiv preprint arXiv:1903.06999, 2019.
- J. S. Yun, S. J. Lee, S. B. Yoo, and S. Han, "Hybrid-Domain High-Frequency Attention Network for Arbitrary Magnification Super-Resolution," Journal of the Korea Institute of Information and Communication Engineering, vol. 25, no. 11, pp. 1477-1485, 2021. https://doi.org/10.6109/JKIICE.2021.25.11.1477
- J. S. Yun and S. B. Yoo, "Single Image Super-Resolution with Arbitrary Magnification Based on High-Frequency Attention Network," Mathematics, vol. 10, no. 2, pp. 275(1)-275(19), Jan. 2022.
- Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, "Image Super-Resolution Using Very Deep Residual Channel Attention Networks," in Proceedings of the European conference on computer vision, Salt Lake City: UT, USA, pp. 286-301, 2018.