Acknowledgement
본 결과물은 환경부의 재원으로 한국환경산업기술원의 ICT기반 환경영향평가 의사결정 지원 기술개발사업의 지원을 받아 연구되었습니다(No. 2020002990009).
References
- Ahirwal J, Nath A, Brahma B, Deb S, Sahoo UK, Nath AJ. 2021. Patterns and driving factors of biomass carbon and soil organic carbon stock in the Indian Himalayan region. Science of the Total Environment 770: 145292.
- Azizi K, Ayoubi S, Nabiollahi K, Garosi Y, Gislum R. 2022. Predicting heavy metal contents by applying machine learning approaches and environmental covariates in west of Iran. Journal of Geochemical Exploration 233: 106921.
- Bae J, Ryu Y. 2015. Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landscape and Urban Planning 136: 57-67. https://doi.org/10.1016/j.landurbplan.2014.11.015
- Cambou A, Shaw RK, Huot H, Vidal-Beaudet L, Hunault G, Cannavo P, Nold F, Schwartz C. 2018. Estimation of soil organic carbon stocks of two cities, New York City and Paris. Science of the Total Environment 644: 452-464. https://doi.org/10.1016/j.scitotenv.2018.06.322
- Yoon DH, Hong YK, Kim JW, Kim SH, Song GH, Lee KM, Kim SC. 2019. Evaluating Heavy Metal Pollution in Soil Using Pollution Index Model. Korean Society of Soil Science and Fertilizer, 168-168. [Korean Literature]
- Feng Y, Chen S, Tong X, Lei Z, Gao C, Wang J. 2020. Modeling changes in China's 2000-2030 carbon stock caused by land use change. Journal of Cleaner Production 252: 119659.
- Forkuor G, Hounkpatin OK, Welp G, Thiel M. 2017. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models. PloS One 12(1): e0170478.
- Golia EE, Diakoloukas V. 2021. Soil parameters affecting the levels of potentially harmful metals in Thessaly area, Greece: a robust quadratic regression approach of soil pollution prediction. Environmental Science and Pollution Research, 1-18.
- Gomes LC, Faria RM, de Souza E, Veloso GV, Schaefer CEG, Fernandes FEI. 2019. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 340: 337-350. https://doi.org/10.1016/j.geoderma.2019.01.007
- Govil PK, Sorlie JE, Murthy NN, Sujatha D, Reddy GLN, Rudolph-Lund K, Krishna AK, Rama MK. 2008. Soil contamination of heavy metals in the Katedan industrial development area, Hyderabad, India. Environmental Monitoring and Assessment 140(1): 313-323. https://doi.org/10.1007/s10661-007-9869-x
- Hengl T, Mendes de Jesus J, Heuvelink GB, Ruiperez Gonzalez M, Kilibarda M, Blagotic A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, Antonio Guevara M, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12(2): e0169748.
- Jeong TU, Cho EJ, Jeong JE, Ji HS, Lee KS, Yoo PJ, Kim GG, Choi JY, Park JH, Kim SH, Heo JS, Seo DC. 2015. Soil contamination of heavy metals in national industrial complexes, Korea. Korean Journal of Environmental Agriculture 34(2): 69-76. [Korean Literature] https://doi.org/10.5338/KJEA.2015.34.2.19
- Jia X, Hu B, Marchant BP, Zhou L, Shi Z, Zhu Y. 2019. A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: A case study in the Yangtze Delta, China. Environmental Pollution 250: 601-609. https://doi.org/10.1016/j.envpol.2019.04.047
- Jun YJ. 2011. Study on characterization of air and soil pollution in Daejeon area using GIS. Master's thesis, Hanbat National University, pp. 1-44. [Korean Literature]
- Kim SM, Choi Y, Yi H, Park HD. 2017. Geostatistical prediction of heavy metal concentrations in stream sediments considering the stream networks. Environmental Earth Sciences 76(2): 1-18. [Korean Literature] https://doi.org/10.1007/s12665-016-6304-z
- KIMG. 2000. Natural geological mapping for natural environment.
- Knoll L, Breuer L, Bach M. 2019. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Science of the Total Environment 668: 1317-1327. https://doi.org/10.1016/j.scitotenv.2019.03.045
- Korea Institute of Geoscience and Mineral Resources. 2007. A method for treating fluorine-contaminated soil induced by fluorite. [Korean Literature]
- Korea Meteorological Administration. 2021. 2020 Metropolitan Meteorological Administration Climate Data Collection, 11-1360619-000006-10. [Korean Literature]
- Li F, Huang J, Zeng G, Liu W, Huang X, Huang B, Gu Y, Shi L, He X, He Y. 2015. Toxic metals in topsoil under different land uses from Xiandao District, middle China: distribution, relationship with soil characteristics, and health risk assessment. Environmental Science and Pollution Research 22(16): 12261-12275. https://doi.org/10.1007/s11356-015-4425-7
- Li Y, Wang S, Nan Z, Zang F, Sun H, Zhang Q, Huang W, Bao L. 2019. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China. Science of the Total Environment 663: 307-314. https://doi.org/10.1016/j.scitotenv.2019.01.257
- Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L. 2014. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of The Total Environment 468-469: 843-853. https://doi.org/10.1016/j.scitotenv.2013.08.090
- Liang Z, Chen S, Yang Y, Zhou Y, Shi Z. 2019. High-resolution three-dimensional mapping of soil organic carbon in China: Effects of SoilGrids products on national modeling. Science of The Total Environment 685: 480-489. https://doi.org/10.1016/j.scitotenv.2019.05.332
- Ma W, Tan K, Du P. 2016. Predicting soil heavy metal based on Random Forest model. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4331-4334, IEEE.
- Mahmoudzadeh H, Matinfar HR, Taghizadeh-Mehrjardi R, Kerry R. 2020. Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Regional 21: e00260.
- Ministry of Environment. 2010. Summary of the results of the 2009 soil measurement network and soil pollution survey. [Korean Literature]
- Pham BT, Pradhan B, Bui DT, Prakash I, Dholakia MB. 2016. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environmental Modelling & Software 84: 240-250. https://doi.org/10.1016/j.envsoft.2016.07.005
- Shahabi H, Hashim M. 2015. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Scientific Reports 5(1): 1-15. https://doi.org/10.9734/JSRR/2015/14076
- Shen LQ, Amatulli G, Sethi T, Raymond P, Domisch S. 2020. Estimating nitrogen and phosphorus concentrations in streams and rivers, within a machine learning framework. Scientific Data 7(1): 1-11. https://doi.org/10.1038/s41597-019-0340-y
- Varol M. 2011. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials 195: 355-364. https://doi.org/10.1016/j.jhazmat.2011.08.051
- Vasenev VI, Stoorvogel JJ, Leemans R, Valentini R, Hajiaghayeva RA. 2018. Projection of urban expansion and related changes in soil carbon stocks in the Moscow Region. Journal of Cleaner Production 170: 902-914. https://doi.org/10.1016/j.jclepro.2017.09.161
- Viscarra-Rossel RA, Lee J, Behrens T, Luo Z, Baldock J, Richards A. 2019. Continentalscale soil carbon composition and vulnerability modulated by regional environmental controls. Nature Geoscience 12(7): 547-552. https://doi.org/10.1038/s41561-019-0373-z
- Wang H, Yilihamu Q, Yuan M, Bai H, Xu H, Wu J. 2020. Prediction models of soil heavy metal (loid) s concentration for agricultural land in Dongli: A comparison of regression and random forest. Ecological Indicators 119: 106801.
- Yang H, Huang K, Zhang K, Weng Q, Zhang H, Wang F. 2021. Predicting heavy metal adsorption on soil with machine learning and mapping global distribution of soil adsorption capacities. Environmental Science & Technology 55(20): 14316-14328. https://doi.org/10.1021/acs.est.1c02479
- Yoon JK, Kim DH, Kim TS, Park JG, Chung IR, Kim JH, Kim H. 2009. Evaluation on natural background of the soil heavy metals in Korea. Journal of Soil and Groundwater Environment 14(3): 32-39.
- Zhang D, Tsai JJ. (Eds.). 2006. Advances in machine learning applications in software engineering. Igi Global.
- Zhang H, Yin A, Yang X, Fan M, Shao S, Wu J, Wu P, Zhang M, Gao C. 2021. Use of machine-learning and receptor models for prediction and source apportionment of heavy metals in coastal reclaimed soils. Ecological Indicators 122: 107233.
- Zhang H, Yin S, Chen Y, Shao S, Wu J, Fan M, Chen F, Gao C. 2020. Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China. Journal of Cleaner Production 273: 122858.
- Zhou T, Geng Y, Ji C, Xu X, Wang H, Pan J, Bumberger J, Haase D, Lausch A. 2021. Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Science of the Total Environment 755: 142661.