DOI QR코드

DOI QR Code

(-201)면 산화갈륨 단결정 기판 미세 결함 분석

Characterizations of Microscopic Defect Distribution on (-201) Ga2O3 Single Crystal Substrates

  • 최미희 (한밭대학교 신소재공학과) ;
  • 신윤지 (한국세라믹기술원 반도체소재센터) ;
  • 조성호 (한국세라믹기술원 반도체소재센터) ;
  • 정운현 (한국세라믹기술원 반도체소재센터) ;
  • 정성민 (한국세라믹기술원 반도체소재센터) ;
  • 배시영 (한국세라믹기술원 반도체소재센터)
  • Choi, Mee-Hi (Department of Materials Science and Engineering, Hanbat National University) ;
  • Shin, Yun-Ji (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Seong-Ho (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Woon-Hyeon (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Seong-Min (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Bae, Si-Young (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2022.07.21
  • 심사 : 2022.08.04
  • 발행 : 2022.09.01

초록

Single crystal gallium oxide (Ga2O3) has been an emerging material for power semiconductor applications. However, the defect distribution of Ga2O3 substrates needs to be carefully characterized to improve crystal quality during crystal growth. We analyzed the type and the distribution of defects on commercial (-201) Ga2O3 substrates to get a basic standard prior to growing Ga2O3 crystals. Etch pit technique was employed to expose the type of defects on the Ga2O3 substrates. Synchrotron white beam X-ray topography was also utilized to observe the defect distribution by a nondestructive manner. We expect that the observation of defect distribution with three-dimensional geometry will also be useful for other crystal planes of Ga2O3 single crystals.

키워드

과제정보

본 연구는 세라믹전략기술개발사업(KPP22013)의 지원을 받아 수행되었습니다. 포항방사광가속기에서의 실험은 과학기술정보통신부와 포항공대의 지원을 받았습니다.

참고문헌

  1. S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, 011301 (2018). [DOI: https://doi.org/10.1063/1.5006941]
  2. M. H. Wong, K. Goto, H. Murakami, Y. Kumagai, and M. Higashiwaki, IEEE Electron Device Lett., 40, 431 (2019). [DOI: https://doi.org/10.1109/LED.2018.2884542]
  3. M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 103, 123511 (2013). [DOI: https://doi.org/10.1063/1.4821858]
  4. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 100, 013504 (2012). [DOI: https://doi.org/10.1063/1.3674287]
  5. X. Wang, M. Faizan, G. Na, X. He, Y. Fu, and L. Zhang, Adv. Electron. Mater., 6, 2000119 (2020). [DOI: https://doi.org/10.1002/aelm.202000119]
  6. H. Y. Playford, A. C. Hannon, E. R. Barney, and R. I. Walton, Chem. Eur. J., 19, 2803 (2013). [DOI: https://doi.org/10.1002/chem.201203359]
  7. S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, J. Phys. Chem. C, 117, 4194 (2013). [DOI: https://doi.org/10.1021/jp311300e]
  8. K. Akaiwa, K. Kaneko, K. Ichino, and S. Fujita, Jpn. J. Appl. Phys., 55, 1202BA (2016). [DOI: https://doi.org/10.7567/JJAP.55.1202BA]
  9. M. Orita, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett., 77, 4166 (2000). [DOI: https://doi.org/10.1063/1.1330559]
  10. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, Jpn. J. Appl. Phys., 55, 1202A2 (2016). [DOI: http://doi.org/10.7567/JJAP.55.1202A2]
  11. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 100, 013504 (2012). [DOI: https://doi.org/10.1063/1.3674287]
  12. K. Hoshikawa, T. Kobayashi, Y. Matsuki, E. Ohba, and T. Kobayashi, J. Cryst. Growth, 545, 125724 (2020). [DOI: https://doi.org/10.1016/j.jcrysgro.2020.125724]
  13. K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, and Y. Nakamura, J. Cryst. Growth, 447, 36 (2016). [DOI: https://doi.org/10.1016/j.jcrysgro.2016.04.022]
  14. E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, J. Cryst. Growth, 270, 420 (2004). [DOI: https://doi.org/10.1016/j.jcrysgro.2004.06.027]
  15. H. Cui, H. F. Mohamed, C. Xia, Q. Sai, W. Zhou, H. Qi, J. Zhao, J. Si, and X. Ji, J. Alloys Compd., 788, 925 (2019). [DOI: https://doi.org/10.1016/j.jallcom.2019.02.076]
  16. N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, Phys. Status Solidi C, 4, 2310 (2007). [DOI: https://doi.org/10.1002/pssc.200674884]
  17. Z. Galazka, Semicond. Sci. Technol., 33, 113001 (2018). [DOI: https://doi.org/10.1088/1361-6641/aadf78]
  18. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, Proc. SPIE 10533, Oxide-based Materials and Devices IX, 105330E (SPIE, California, 2018), p. 9-14. [DOI: https://doi.org/10.1117/12.2301405]
  19. Z. Galazka, S. Ganschow, K. Irmscher, D. Klimm, M. Albrecht, R. Schewski, M. Pietsch, T. Schulz, A. Dittmar, A. Kwasniewski, R. Grueneberg, S. B. Anooz, A. Popp, U. Juda, I. M. Hanke, T. Schroeder, and M. Bickermann, Prog. Cryst. Growth Charact. Mater., 67, 100511 (2021). [DOI: https://doi.org/10.1016/j.pcrysgrow.2020.100511]
  20. E. Ohba, T. Kobayashi, T. Taishi, and K. Hoshikawa, J. Cryst. Growth, 556, 125990 (2021). [DOI: https://doi.org/10.1016/j.jcrysgro.2020.125990]
  21. Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, J. Cryst. Growth, 404, 184 (2014). [DOI: https://doi.org/10.1016/j.jcrysgro.2014.07.021]
  22. J. D. Blevins, K. Stevens, A. Lindsey, G. Foundos, and L. Sande, IEEE Trans. Semicond. Manuf., 32, 466 (2019). [DOI: https://doi.org/10.1109/TSM.2019.2944526]
  23. Z. Galazka, J. Appl. Phys., 131, 031103 (2022). [DOI: https://doi.org/10.1063/5.0076962]
  24. T. S. Ngo, D. D. Le, J. Lee, S. K. Hong, J. S. Ha, W. S. Lee, and Y. B. Moon, J. Alloys Compd., 834, 155027 (2020). [DOI: https://doi.org/10.1016/j.jallcom.2020.155027]
  25. O. Ueda, N. Ikenaga, K. Koshi, K. Iizuka, A. Kuramata, K. Hanada, T. Moribayashi, S. Yamakoshi, and M. Kasu, Jpn. J. Appl. Phys., 55, 1202BD (2016). [DOI: https://doi.org/10.7567/JJAP.55.1202BD]
  26. K. Hanada, T. Moribayashi, T. Uematsu, S. Masuya, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, and M. Kasu, Jpn. J. Appl. Phys., 55, 030303 (2016). [DOI: https://doi.org/10.7567/JJAP.55.030303]
  27. Y. Yao, Y. Ishikawa, and Y. Sugawara, Phys. Status Solidi A, 217, 1900630 (2020). [DOI: https://doi.org/10.1002/pssa.201900630]
  28. Y. Yao, Y. Sugawara, and Y. Ishikawa, J. Appl. Phys., 127, 205110 (2020). [DOI: https://doi.org/10.1063/5.0007229]