DOI QR코드

DOI QR Code

Optimization Study for Material Properties of Piezoelectric Material Using Parameter Estimation Method: Part I. Polycrystal PZT Ceramics

매개변수 평가법을 이용한 압전재료의 재료물성 최적화 연구 Part I. 다결정 PZT 세라믹스

  • Shin, Ho-Yong (Materials Digitalization Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Ho-Yong (Department of Advanced Material Engineering, Sunmoon University) ;
  • Hong, Il-Gok (Materials Digitalization Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jong-Ho (Materials Digitalization Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Im, Jong-In (Materials Digitalization Center, Korea Institute of Ceramic Engineering and Technology)
  • 신호용 (한국세라믹기술원 디지털소재혁신센터) ;
  • 이호용 (선문대학교 신소재공학과) ;
  • 홍일곡 (한국세라믹기술원 디지털소재혁신센터) ;
  • 김종호 (한국세라믹기술원 디지털소재혁신센터) ;
  • 임종인 (한국세라믹기술원 디지털소재혁신센터)
  • Received : 2022.03.28
  • Accepted : 2022.05.23
  • Published : 2022.09.01

Abstract

Recently, piezoelectric devices, such as ultrasonic surgery, ultrasonic atomizer, and ultrasonic speaker, are analyzed and designed by finite element simulation methods. However, the discrepancy between the design and the experiment results of the device typically occurs due to the inaccuracy of the piezoelectric material properties. To improve the simulation accuracy, the material properties of the PZT ceramics were better refined using parameter estimation method. The material parameters are elastic stiffness cEij and piezoelectric constant eij of PZT ceramics. The impedance curve characteristics for the LTE mode of PZT ceramics were calculated. The mismatch between the simulation and the experimental data were compared and minimized by a least square method. Finally, the simulated impedance data were compared with the experimental data for the various vibration modes of PZT ceramics and the optimized material properties of PZT ceramics were verified. To further verify the accuracy, this method was also applied to piezoelectric PMN-PT single crystals.

Keywords

References

  1. B. G. Ahn, D. K. Lee, D. Y. Han, C. Y. Kang, J. W. Choi, H. J. Kim, and S. J. Yoon, Journal of the Korean Ceramic Society, 40, 225 (2003). [DOI: https://doi.org/10.4191/kcers.2003.40.3.225]
  2. T. Li, Y. Chen, F. Boey, and J. Ma, Sensors and Actuators A: Physical, 134, 544 (2007). [DOI: https://doi.org/10.1016/j.sna.2006.06.032]
  3. K. Tanaka, Y. Tanaka, H. Shiomi, Y. Kurumi, and T. Tani, Procedia Engineering, 47, 366 (2012). [DOI: http://dx.doi.org/10.1016/j.proeng.2012.09.159]
  4. X. Liao, Z. Qiu, T. Jiang, M.R. Sadiq, Z. Huang, C.E.M. Demore and S. Cochran, Materials, 8, 8304 (2015). [DOI: https://doi.org/10.3390/ma8125456]
  5. M. Stewart and M. G. Cain, Direct Piezoelectric Measurement: The Berlincourt Method. Characterisation of Ferroelectric Bulk Materials and Thin Films (Springer: Dordrecht, 2014), pp. 37-64.
  6. H. J. McSkimin, J. Acoust. Soc. Am., 33, 606 (1961). [DOI: https://doi.org/10.1121/1.1908740]
  7. B. Kaltenbacher, M. Kaltenbacher, R. Lerch, and R. Simkovics, Proc. 2000 IEEE Ultrasonics Symposium (San Juan, Puerto Rico, 2000). [DOI: https://doi.org/10.1109/ULTSYM.2000.921501]
  8. D. Kybartas and A. Lukosevicius, Ultragarsas, 45, 22 (2002).
  9. H. W. Joo, C. H. Lee, J. S. Rho, and H. K. Jung, IEEE Trans. Ultrason. Ferr., 50, 965 (2003). [DOI: https://ieeexplore.ieee.org/document/1226540]
  10. H. W. Joo, C. H. Lee, and H. K. Jung, Ultrasonics, 43, 13 (2004). [DOI: http://dx.doi.org/10.1109/TUFFC. 2003.1226540]
  11. B. Kaltenbacher, T. Lahmer, M. Mohr, and M. Kaltenbacher, Eur. J. Appl. Math., 17, 383 (2006). [DOI: https://doi.org/10.1017/S0956792506006474]
  12. T. Lahmer, M. Kaltenbacher, B. Kaltenbacher, R. Lerch, and E. Leder, IEEE Trans. Ultrason. Ferr., 55, 465 (2008).
  13. S. J. Rupitsch and R. Lerch, Appl. Phys. A., 97, 735 (2009). [DOI: https://doi.org/10.1007/s00339-009-5438-1]
  14. B. Jaffe, W. R. Cook Jr. and H. Jaffe, Piezoelectric Ceramics (Academic Press, London and New York, 1971).
  15. J. F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1985).
  16. ANSI/IEEE Standard No. 176-1987 IEEE Standard on Piezoelectricity, IEEE, New York, 1987.
  17. O. B. Wilson, Introduction to Theory and Design of Sonar Transducers (Peninsula Press, LosAltos, 1988).
  18. K. W. Kwok, H.L.W. Chan, and C. L. Choy, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44, 733 (1997). [DOI: https://doi.org/10.1109/58.655188]
  19. R. Zhang, B. Jiang, and W. W. Cao, J. Appl. Phys., 90, 3471 (2001). [DOI: https://doi.org/10.1063/1.1390494]
  20. R. E. Newnham, Properties of Materials: Anisotropy (Symmetry, Structure, Oxford, New York, 2005).
  21. M. J. Zipparo and C. G. Oakley, Proc. IEEE Ultrason Sym. (IEEE, Atlanta, GA, USA, 2001) p. 1017. [DOI: https://doi.org/10.1109/ULTSYM.2001.991892]
  22. S. H. Lee and Y. R. Roh, The Journal of the Acoustical Society of Korea, 23, 103 (2004). [DOI: https://doi.org/10.7776/ASK.2011.30.7.368]
  23. C. Joh, J. Kim, and Y. Roh, Smart Mater. Struct., 22, 12 (2013). [DOI: https://doi.org/10.1088/0964-1726/22/12/125027]
  24. M. Wild, B. Martin, H. Einar, H. Lars, and H. Karina, J. Acoust. Soc. Am., 144, 2128 (2018). [DOI: https://doi.org/10.1121/1.5057443]
  25. L. Li, L. K. Wang, L. Qin, and Y. Lv, IEEE Trans, U.F.F.C., 56, 1476 (2009). [DOI: https://doi.org/10.1109/TUFFC.2009.1203]
  26. J. Kim, S. Pyo, and Y. Roh, The Journal of the Acoustical Society of Korea, 30, 368 (2011). [DOI: https://doi.org/10.7776/ASK.2011.30.7.368]
  27. D. Berlincourt and H.H.A. Krueger, Proc. Properties of Morgan Electro Ceramic Ceramics (Tech. Publication TP-226, Cleveland, OH, USA, 2002).