DOI QR코드

DOI QR Code

Mass Transport Properties and Influence of Natural Convection for Voltammetry at the Agarose Hydrogel Interface

  • Kim, Byung-Kwon (Department of Chemistry and Nanoscience, Ewha Womans University) ;
  • Park, Kyungsoon (Department of Chemistry and Cosmetics, Jeju National University)
  • 투고 : 2022.02.17
  • 심사 : 2022.03.15
  • 발행 : 2022.08.28

초록

Agarose hydrogel, a solid electrolyte, was investigated voltammetrically in terms of transport properties and natural convection effects using a ferrocenyl compound as a redox probe. To confirm the diffusion properties of solute on the agarose interface, the diffusion coefficients (D) of ferrocenemethanol in agarose hydrogel were determined by cyclic voltammetry (CV) according to the concentration of agarose hydrogel. While the value of D on the agarose interface is smaller than that in the bulk solution, the square root of the scan rate-dependent peak current reveals that the mass transport behavior of the solute on the agarose surface shows negligible convection or migration effects. In order to confirm the reduced natural convection on the gel interface, scan rate-dependent CV was performed in the solution phase and on the agarose surface, respectively. Slow scan voltammetry at the gel interface can determine a conventional and reproducible diffusion-controlled current down to a scan rate of 0.3 mV/s without any complicated equipment.

키워드

과제정보

K.P. acknowledges the support from Basic Science Research Program to Research Institute for Basic Sciences (RIBS) of Jeju National University through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A6A1A 10072987). B.K. was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A1A10039823) and by the National Research Foundation (NRF) of Korea, which is funded by the Ministry of Science and ICT (NRF-2021R1A2C4002069). This work was supported by the Ewha Womans University Research Grant of 2021.

참고문헌

  1. A. Mateescu, Y. Wang, J. Dostalek and U. Jonas, Membranes (Basel), 2012, 2(1), 40-69. https://doi.org/10.3390/membranes2010040
  2. T. P. Vales, J. P. Jee, W. Y. Lee, I. Min, S. Cho and H. J. Kim, Bull. Korean Chem. Soc., 2020, 41(4), 406-412. https://doi.org/10.1002/bkcs.11980
  3. S. Khajouei, H. Ravan and A. Ebrahimi, Adv. Colloid Interface Sci., 2020, 275, 102060. https://doi.org/10.1016/j.cis.2019.102060
  4. A. Herrmann, R. Haag and U. Schedler, Adv. Healthc. Mater., 2021, 10(11), 2100062. https://doi.org/10.1002/adhm.202100062
  5. S.-J. Kim and W. Shin, J. Electrochem. Sci. Technol., 2021, 12(2), 225-229. https://doi.org/10.33961/jecst.2020.01487
  6. J. D. Tang, C. Mura and K. J. Lampe, J. Am. Chem. Soc., 2019, 141(12), 4886-4899. https://doi.org/10.1021/jacs.8b13363
  7. A. S. Hoffman, Adv. Drug Deliv. Rev., 2012, 64, 18-23. https://doi.org/10.1016/j.addr.2012.09.010
  8. A. Vashist, A. Vashist, Y. K. Gupta and S. Ahmad, J. Mater. Chem. B, 2014, 2(2), 147-166. https://doi.org/10.1039/C3TB21016B
  9. C. A. Dreiss, Curr. Opin. Colloid Interface Sci., 2020, 48, 1-17. https://doi.org/10.1016/j.cocis.2020.02.001
  10. F. Zhao, Y. Shi, L. Pan and G. Yu, Acc. Chem. Res., 2017, 50(7), 1734-1743. https://doi.org/10.1021/acs.accounts.7b00191
  11. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang and J. Zhang, Chem. Soc. Rev., 2015, 44(21), 7484-7539. https://doi.org/10.1039/C5CS00303B
  12. F. Zhang, F. Xiao, Z. H. Dong and W. Shi, Electrochimica Acta, 2013, 114, 125-132. https://doi.org/10.1016/j.electacta.2013.09.153
  13. M. Maaloum, N. Pernodet and B. Tinland, Electrophoresis, 1998, 19(10), 1606-1610. https://doi.org/10.1002/elps.1150191015
  14. S. Waki and D. Harvey, Biopolymers, 1982, 21(9), 1909-1926. https://doi.org/10.1002/bip.360210917
  15. N. Pernodet, M. Maaloum and B. Tinland, Electrophoresis, 1997, 18(1), 55-58. https://doi.org/10.1002/elps.1150180111
  16. M. H. Lee and Y. T. Kim, Electrochem. Solid-State Lett., 1999, 2, 72-74. https://doi.org/10.1149/1.1390738
  17. M. Rosi, F. Iskandar, M. Abdullah and Khairurrijal., Int. J. Electrochem. Sci., 2014, 9(8), 4251-4256. https://doi.org/10.1016/S1452-3981(23)08089-6
  18. B. Crulhas, N. P. Ramos, C. R. Basso, V. E. Costa, G. R. Castro and V. A. Pedrosa, Int. J. Electrochem. Sci., 2014, 9, 7596-7604. https://doi.org/10.1016/S1452-3981(23)10990-4
  19. N. Fatin-Rouge, A. Milon and A. Buffle, J. Phys. Chem. B, 2003, 107(44), 12126-12137. https://doi.org/10.1021/jp0303164
  20. Y. Yin, H. Zhang and K. Nishinari, J. Phys. Chem. B, 2007, 111(7), 1590-1596. https://doi.org/10.1021/jp0660334
  21. H. Kang, S. Hwang and J. Kwak, Nanoscale, 2015, 7(3), 994-1001. https://doi.org/10.1039/C4NR06041E
  22. T. Kim, W. Choi, H.-C. Shin, J.-Y. Choi, J. M. Kim, M.-S. Park and W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 14-25. https://doi.org/10.33961/jecst.2019.00619
  23. N. G. Tsierkezos, J. Solution Chem., 2007, 36(3), 289-302. https://doi.org/10.1007/s10953-006-9119-9
  24. R. J. Foster, A. J. Kelly and J. G. Vos, J. Electroanal. Chem., 1989, 270(1-2), 365-379. https://doi.org/10.1016/0022-0728(89)85049-1
  25. D. Shoup and A. Szabo, J. Electroanal. Chem., 1982, 140(2), 237-245. https://doi.org/10.1016/0022-0728(82)85171-1
  26. J. Lee, J. Lee, S. Song and B. K. Kim, Bull. Korean Chem. Soc., 2021, 42(5), 818-823. https://doi.org/10.1002/bkcs.12237
  27. X. Gao, J. Lee and H. S. White, Anal. Chem., 1995, 67(9), 1541-1545. https://doi.org/10.1021/ac00105a011
  28. K. Ngamchuea, S. Eloul, K. Tschulik and R. G. Compton, Anal. Chem., 2015, 87(14), 7226-7234. https://doi.org/10.1021/acs.analchem.5b01293
  29. J. K. Novev, S. Eloul and R. G. Compton, J. Phys. Chem. C, 2016, 120(25), 13549-13562. https://doi.org/10.1021/acs.jpcc.6b03413
  30. C. Amatore, S. Szunerits, L. Thouin and J. S. Warkocz, J. Electroanal. Chem., 2001, 500(1-2), 62-70. https://doi.org/10.1016/S0022-0728(00)00378-8
  31. B. Wang, K. J. Aoki, J. Chen and T. Nishiumi, J. Electroanal. Chem., 2013, 700, 60-64. https://doi.org/10.1016/j.jelechem.2013.04.018
  32. K. Park, E. Kim, J. H. Park and S. Hwang, Electrochem. Commun., 2017, 82, 93-97. https://doi.org/10.1016/j.elecom.2017.07.017
  33. J. Labille, N. Fatin-Rouge and J. Buffle, Langmuir, 2007, 23(4), 2083-2090. https://doi.org/10.1021/la0611155
  34. A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd Ed., Wiley, New York, 2002.
  35. M. Ciszkowska and M. D. Guillaume, J. Phys. Chem. A, 1999, 103(5), 607-613. https://doi.org/10.1021/jp983389+
  36. A. L. Crumbliss, S. C. Ferine, A. K. Edwards and D. P. Rillema, J. Phys. Chem., 1992, 96(3), 1388-1394. https://doi.org/10.1021/j100182a067