DOI QR코드

DOI QR Code

Mineral bioavailability and physicochemical properties of muffins prepared with enzyme-treated whole wheat flour

효소처리 통밀가루를 첨가한 머핀의 미네랄 생체이용율 및 품질 특성

  • Lee, Sin Young (Department of Food and Nutrition, Hanyang University) ;
  • Lee, Kwang Yeon (Department of Food and Nutrition, Hanyang University) ;
  • Lee, Hyeon Gyu (Department of Food and Nutrition, Hanyang University)
  • 이신영 (한양대학교 식품영양학과) ;
  • 이광연 (한양대학교 식품영양학과) ;
  • 이현규 (한양대학교 식품영양학과)
  • Received : 2022.07.15
  • Accepted : 2022.08.10
  • Published : 2022.08.31

Abstract

The effects of phytase and cellulase treatment on the bioavailability of iron, calcium, and zinc in whole wheat flour and their food applications were evaluated in this study. Whole wheat flour was treated with phytase and cellulase either individually or in combination and incubated at 50℃ for 2 h; the concentrations used for the individual enzymes were 2%, 10%, and 20%. The concentration of the combination enzyme was 20% with a mixing ratio of 5:5. Total dietary fiber and phytate contents were reduced as the concentrations of phytase and cellulase increased. The bioavailability of iron, calcium, and zinc was notably improved after in vitro digestion in 20% cellulase, combination enzyme, and 20% phytase, respectively. Muffins made with cellulase- and phytase-treated whole wheat flour showed improved quality and bioavailability of minerals. Phytase- and cellulase-treated whole wheat flour may be useful for development of functional food products with improved bioavailability of minerals.

본 연구는 통밀가루에 다량 함유되어 있는 미네랄의 체내 이용률을 높여 기능성 소재로의 응용가능성을 조사하고자 phytase와 cellulase를 처리한 통밀가루 미네랄의 체내이용률에 대하여 연구하였다. 이에 통밀가루의 최적 효소 처리 조건을 확립하기 위하여 효소농도별에 따른 이화학적 특성과 phytate 및 식이섬유소의 함량을 분석하였으며, 미네랄 강화 소재로의 이용 가능성을 확인하기 위해 머핀을 제조 후 품질특성 및 미네랄의 체내 이용률을 확인하였다. 통밀가루 건중량의 2, 10 및 20%로 2시간 동안 반응시킨 phytase와 cellulase 단일 효소처리한 시료와 20%의 cellulase/phytase를 5:5 비율로 복합 처리한 시료를 제조하였다. 효소 처리 통밀가루의 총 식이섬유소의 함량은 효소 농도에 따라 감소하였고 특히, 복합 처리군에서 가장 크게 감소하였다. 더불어 phytate 함량은 모든 효소에서 농도가 증가할수록 감소하였다. 효소처리 농도가 증가할수록 철분, 칼슘, 아연의 체내 이용률이 증가하였는데 특히, 철분의 체내 이용률은 cellulase를 처리하였을 때 약 3.3배로 가장 크게 증가하였고, 칼슘은 cellulase와 phytase를 복합으로 처리하였을 때 약 5.1배로 가장 증가하였고, 아연은 phytase를 처리하였을 때 약 2.8배로 가장 크게 증가하였다. 미네랄의 이용률이 가장 높았던 20% phytase, cellulase, cellulase/phytase 처리한 통밀가루를 이용하여 대체 비율(0, 25, 50, 75 및 100%)에 따른 머핀의 품질특성 및 미네랄 체내 이용률을 확인한 결과, 효소 처리 통밀가루로 제조한 머핀의 부피는 무처리군으로 제조한 머핀보다 대체율이 높을수록 증가하였으며, 조직감의 경우 hardness는 감소하였고, springiness와 cohesiveness는 증가하는 경향을 보였다. 그리고 효소처리 통밀가루로 제조한 머핀에서 대체 비율이 증가할수록 철분, 칼슘, 아연의 체내 이용률은 무처리군 머핀보다 증가하였는데, Cellulase 처리군의 철분 체내 이용률은 2.3배, cellulase/phytase 복합 처리군에서 칼슘은 3.7배, phytase 처리군에서 아연은 2.3배로 가장 크게 증가하였다. 이상의 결과로부터 통밀가루에 phytase와 cellulase를 처리한 후 미네랄의 이용률이 증가함을 확인하였고, 효소처리 통밀가루로 제조한 머핀의 품질의 특성이 향상되어 미네랄 이용률 증진 소재로 응용이 가능함을 확인하였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2021R1A2C2013460).

References

  1. Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383 (2000) https://doi.org/10.1016/S0734-9750(00)00041-0
  2. Carnonara F, Popp B, Schmid A, Iacobazzi V, Genchi G, Palmieri F, Benz R. The role of sterols in functional reconstitution of water-soluble mitochondria protein from plants. J. Bioenerg. Biomembr. 28: 181-189 (1996) https://doi.org/10.1007/BF02110649
  3. Cheryan M. Phytic acid interations in food systems. Crit. Rev. Food Sci. 13: 297-335 (1980) https://doi.org/10.1080/10408398009527293
  4. Cosgrove DJ. The chemistry and biochemistry of inositol phosphates. Pure Appl. Chem. 16: 209-224 (1966)
  5. Daniels DG., Fisher N. Hydrolysis of the phytate of wheat flour during breadmaking. Brit. J. Nutr. 46: 1-6 (1981) https://doi.org/10.1079/BJN19810003
  6. Fageer AS, Babiker EE, El Tinay AH. Effect of malt pretreatment and/or cooking on phytate and essential amino acids contents and in vitro protein digestibility of corn flour. Food Chem. 88: 261-265 (2004) https://doi.org/10.1016/j.foodchem.2004.01.040
  7. Frontela C, Garcia-Alonso FJ, Ros G, Martinez C. Phytic acid and inositol phosphates in raw flours and infant cereals: The effect of processing. J. Food Compos. Anal. 21: 343-350 (2008) https://doi.org/10.1016/j.jfca.2008.02.003
  8. Frontela C, Ros G, Martinez C. Phytic acid content and "in vitro" iron, calcium and zinc bioavailability in bakery products: The effect of processing. J. Cereal Sci. 54: 173-179 (2011) https://doi.org/10.1016/j.jcs.2011.02.015
  9. Gillooly M, Bothwell T, Charlton R, Torrance J, Bezwoda W, MacPhail A, Derman D, Novelli L, Morrall P, Mayet F. Factors affecting the absorption of iron from cereals. Brit. J. Nutr. 51: 37-46 (1984) https://doi.org/10.1079/BJN19840007
  10. Greiner R, Konietzny U. Phytase for food application. Food Technol. Biotechnol. 44: 123-140 (2006)
  11. Harland BF, Oberleas D. Phytate in foods. World Rev. Nutr. Diet. 52: 235-259 (1987) https://doi.org/10.1159/000415199
  12. Haros M, Rosell CM, Benedito C. Use of fungal phytase to improve breadmaking performance of whole wheat bread. J. Agric. Food Chem. 49: 5450-5454 (2001) https://doi.org/10.1021/jf010642l
  13. Haung WG, Lantzsch HJ. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 34: 1423-1426 (1983) https://doi.org/10.1002/jsfa.2740341217
  14. Hurrell RF, Reddy MB, Burri J, Cook JD. Phytate degradation determines the effect of industrial processing and home cooking on iron absorption from cereal-based foods. Brit. J. Nutr. 88: 117-123 (2002) https://doi.org/10.1079/BJN2002594
  15. Hurrell RF. Phytic acid degradation as a means of improving iron absorption. Int. J. Vitam. Nutr. Res. 74: 445-452 (2004) https://doi.org/10.1024/0300-9831.74.6.445
  16. Jenkins DJ, Wolever TMS, Leeds AR, Gassull MA, Haisman P, Dilawori J, Goff DV, Metz GL, Alberti KGMM. Dietary fibres, Fiber analogues, and glucose tolerance; Importance of viscosity. Brit. Med. J. 1: 1392-1394 (1978) https://doi.org/10.1136/bmj.1.6124.1392
  17. Lebesi DM, Tzia C. Effect of the addition of different dietary fiber and edible cereal bran sources on the baking and sensory characteristics of cupcakes. Food Bioprocess Technol. 4: 710-722 (2011) https://doi.org/10.1007/s11947-009-0181-3
  18. Lestienne FI, Besancon P, Caporiccio B, Lullien-Pellerin V, Treche S. Relative contribution of phytates, fibers, and tannins to low iron and zinc in vitro solubility in pearl millet flours and grain fraction. J. Agric. Food Chem. 53: 8342-8348 (2005a) https://doi.org/10.1021/jf050741p
  19. Lestienne FI, Verniere CI, Mouquet C, Picq C, Treche S. Effect of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chem. 89: 421-425 (2005b) https://doi.org/10.1016/j.foodchem.2004.03.040
  20. Lonnerdal B, Yuen M, Glazier C, Litov R. Magnesium bioavailability from human milk, cow milk, and infant formula in suckling rat pups. Am. J. Clin. Nutr. 58: 392-397 (1993) https://doi.org/10.1093/ajcn/58.3.392
  21. Luccia BH, Kunkel ME. In vitro availability of calcium from sources of cellulose, methylcellulose, and psyllium. Food chem. 77: 139-146 (2002) https://doi.org/10.1016/S0308-8146(01)00168-6
  22. Luo Y, Xie W, Cui Q. Effect of phytase, cellulase and dehulling treatments on iron and zinc in vitro solubility in faba bean (Vicia faba L.) flour and legume fractions. J. Agric. Food Chem. 58: 2483-2490 (2010) https://doi.org/10.1021/jf903275w
  23. Luo Y, Xie W. Effect of phytase treatment on iron bioavailability in faba bean (Vicia faba L.) flour. Food Chem. 134: 1251-1255 (2012) https://doi.org/10.1016/j.foodchem.2012.03.082
  24. Maga JA. Phytate: its chemistry, occurrence, food interations, nutritional sigmificance and method of anaylsis. J. Agric. Food Chem. 30: 1-9 (1982) https://doi.org/10.1021/jf00109a001
  25. Martinez C, Ros G, Periago MJ, Lopez G, Ortuno J, Rincon F. Phytic acid in human nutrition. Food Sci. Technol. Int. 2: 201-209 (1996) https://doi.org/10.1177/108201329600200402
  26. Nielsen MM, Damstrup ML, Thomsen AD, Rasmussen SK, Hansen A. Phytase activity and degradation of phytic acid during rye bread making. Eur. Food Res. Technol. 225: 173-181 (2007) https://doi.org/10.1007/s00217-006-0397-7
  27. Sanz-Penella JM, Tamayo-Ramos JA, Sanz Y, Haros M. Phytate reduction in bran-enriched bread by phytase-producing bifidobacteria. J. Agric. Food Chem. 57: 10239-10244 (2009) https://doi.org/10.1021/jf9023678
  28. Pham VH, Tomoko M, Naofumi M. Dough and bread qualities of flours with whole waxy wheat flour substitution. Food Res. Int. 40: 273-279 (2007) https://doi.org/10.1016/j.foodres.2006.10.007
  29. Renzetti S, Arendt EK. Effect of protease treatment on the baking quality of brown rice bread: From textural and rheological properties to biochemistry and microstructure. J. Cereal Sci. 50: 22-28 (2009) https://doi.org/10.1016/j.jcs.2009.02.002
  30. Rupasinghe HP, Wang L, Huber GM, Pitts NL. Effect of baking on dietary fibre and phenolics of muffins incorporated with apple skin powder. Food Chem. 107: 1217-1224 (2008)
  31. Slominski BA, Cyran M, Guenter W, Campbell LD. Nutritive value of enzyme-treated canola meal. Enzyme 40: 145-147 (1999)
  32. Song JY, Lee SK, Shin MS. Effects RS-3 type resistant starches on breadmaking and quality of white pan bread. Korean J. Food Cook. Sci. 16: 188-194 (2000)
  33. Temple L, Gibson RS, Hotz C. Use of soaking and enrichment for improving the content and bioavailability of calcium, iron, and zinc in complementary foods and diets of rural Malawian weanlings. J. Food Sci. 67: 1926-1932 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb08748.x
  34. Thebaudin JY, Lefebvre AC, Harrington M, Bourgeois CM. Dietary fibres: Nutritional and technological interest. Trends Food Sci. Technol. 8: 41-48 (1997) https://doi.org/10.1016/S0924-2244(97)01007-8
  35. Wang Y, Cheng Y, Ou K, Lin L, Liang J. In vitro solubility of calcium, iron, and zinc in rice bran treated with phytase, cellulase, and protease. J. Agric. Food Chem. 56: 11868-11874 (2008) https://doi.org/10.1021/jf8028896
  36. Weinberg ZG, Ashbell G, Hen Y, Azrieli A. The effect of cellulase and hemicellulase plus pectinase on the aerobic stability and fibre analysis of peas and wheat silages. Anim. Feed Sci. Technol. 55: 287-293 (1995) https://doi.org/10.1016/0377-8401(95)00785-L