DOI QR코드

DOI QR Code

Antidiabetic effects of unripe black raspberry ethanol extracts in C57BL/6N db/db mice

C57BL/6N db/db 생쥐에서 복분자 미숙과 에탄올 추출물의 항당뇨 효과

  • 최혜란 ((재)베리&바이오식품연구소) ;
  • 이수정 ((재)베리&바이오식품연구소) ;
  • 류태호 ((재)베리&바이오식품연구소)
  • Received : 2022.04.26
  • Accepted : 2022.06.26
  • Published : 2022.08.31

Abstract

This study aimed to verify the antidiabetic effects of the unripe black raspberry extract (UBRE) in obese diabetic mice. For the experiment, animal model mice were divided into six groups: normal control, diabetic control, three experimental groups (treated with 75, 150, and 300 mg/kg single dose of UBRE), and a positive control (200 mg/kg metformin). The groups treated with 300 mg/kg UBRE and metformin had significantly reduced blood glucose and triglyceride levels in the diabetic mice compared to those in the vehicle control group. In addition, histopathological evaluation showed that UBRE increased the Langerhans area, cell number, and insulin concentration in the pancreatic islets of db/db mice. Therefore, UBRE exerts significant antidiabetic effects by decreasing the blood glucose and lipid levels, suggesting that it can be consumed as a functional diet for diabetic patients.

본 연구는 복분자 미숙과의 항당뇨 활성을 알아보기 위해 유전적 당뇨 질환 동물모델인 db/db 마우스에서 복분자 미숙과 50% 에탄올 추출물을 11주간 경구 투여한 후 당뇨병 개선 효과를 조사하였다. 체중 측정 결과, 정상대조군에 비하여 당뇨대조군의 체중이 45.9% 증가하였으나 복분자 미숙과 50% 에탄올 추출물을 투여한 실험군들의 체중 변화는 보이지 않았다. 시료 투여 11주 후 공복혈당을 측정했을 때 복분자 미숙과 50% 에탄올 추출물 투여군에서는 농도 의존적으로 혈당 상승이 억제되었으며, 복강내당능 시험을 통해 복분자 미숙과 50% 에탄올 추출물이 양성대조군과 유사한 경향으로 혈당을 감소시키는 것을 확인하였다. 혈중 중성지방 수치 역시 복분자 미숙과 50% 에탄올 추출물 투여군은 농도 의존적으로 중성지방의 농도가 감소되었고, 혈중 인슐린의 농도는 복분자 미숙과 50% 에탄올 추출물 투여군이 당뇨대조군보다 약간 높은 수준으로 나타났으나 군간 유의성은 없었다. 췌장의 병리조직학적 검사 결과, 당뇨대조군에서 인슐린을 분비하는 췌장의 베타세포로 이루어진 랑게르한스섬의 형태학적 손상이 나타났으며 복분자 미숙과 50% 에탄올 추출물 투여에 의해 손상이 억제됨으로써 랑게르한스섬의 면적 및 세포 수가 당뇨대조군에 비해 증가했음을 확인하였다. 또한 인슐린 항체를 이용하여 면역 염색을 통해 췌장 내 베타세포의 형태학적 구조를 확인해 보면 복분자 미숙과 50% 에탄올 추출물 투여군들에서 인슐린을 분비하는 랑게르한스섬 세포 수가 유의하게 증가되었음을 알 수 있었다. 따라서 위 결과를 종합해 볼 때 복분자 미숙과 50% 에탄올 추출물이 혈당 강하에 효과가 있으며, 이를 위한 목적으로 장기간 섭취했을 때 항당뇨에 도움이 될 것이라고 사료된다.

Keywords

References

  1. Altun E, Kaya B, paydas S, Sariakcal B, Karayaylal I. Lacticacidosis induced by metformin in a chronic hemodialysis patientwith diabetes mellitus type 2. Hemodial Int. 18: 529-531 (2014) https://doi.org/10.1111/hdi.12109
  2. Calvano A, Izuora K, Oh EC, Ebersole JL, Lyons TJ, Basu A. Dietary berries, insulin resistance and type 2 diabetes: an overview of human feeding trials. Food Funct. 10: 6227-6243 (2019) https://doi.org/10.1039/C9FO01426H
  3. Choi HR, Lee JH, Lee SJ, Lee MJ, Jeong JT, Lee TB. Effects of Unripe Black Raspberry water extract on lipid metabolism and stress in mice. Korean J. Food Sci. Technol. 46: 489-497 (2014) https://doi.org/10.9721/KJFST.2014.46.4.489
  4. Choi HR, Lee SJ, Lee JH, Kwon JW, Lee HK, Jeong JT, Lee TB. Cholesterol-lowering effects of unripe black raspberry water extract. J. Korean Soc. Food Sci. Nutr. 42: 1899-1907 (2013) https://doi.org/10.3746/jkfn.2013.42.12.1899
  5. Concidine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Macrco CC, McKee LJ, Bauer TL, Caro JF. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334: 292-295 (1996) https://doi.org/10.1056/NEJM199602013340503
  6. Davis BJ, Xie Z, Viollet B, Zou MH. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes 55: 496-505 (2006) https://doi.org/10.2337/diabetes.55.02.06.db05-1064
  7. Defronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM: A balanced overview. Diabetes Care 15: 318-353 (1992) https://doi.org/10.2337/diacare.15.3.318
  8. Dunn FL. Hyperlipidemia in diabetes mellitus. Diabetes Metab. Res. Rev. 6: 47-61 (1990) https://doi.org/10.1002/dmr.5610060103
  9. Hassan J, Mhamed M, Mohamed E. Hypoglycemic effect of Rubus Fructicosis L. and Globularia alypum L. in normal and streptozotocin induced diabetic rats. J. Ethnopharmacol. 81: 351-356 (2002) https://doi.org/10.1016/S0378-8741(02)00118-6
  10. Holman RR, paul SK, Betel MA, Matthew DR, Neil HA. 10-Year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359: 1577-1589 (2008) https://doi.org/10.1056/NEJMoa0806470
  11. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 34: 362-366 (1981) https://doi.org/10.1093/ajcn/34.3.362
  12. Jeong HS, Hong SJ, Lee TB, Kwon JW, Jeong JT, Joo HJ. Effects of black raspberry on lipid profiles and vascular endothelial function in patients with metabolic syndrome. Phytother. Res. 28: 1492-1498 (2014) https://doi.org/10.1002/ptr.5154
  13. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46: 3-19 (2003) https://doi.org/10.1007/s00125-002-1009-0
  14. Kim HY. Antidiabetic effects of Bokbunja (Rubus coreanus Miquel). MS thesis, Inje University, Kimhae-si, Korea. (2003)
  15. Kim JH, Kim CH, Kim HS, Kwon MC, Song YK, Seong NS, Lee SE, Yi JS, Kwon OW, Lee HY. Effect of aqueous extracts from Rubus coreanus Miquel and Angelica gigas Nakai on anti-tumor and anti-stress activities in mice. Korean J. Medicinal Crop Sci. 14: 206-211 (2006)
  16. Kim, OK. Diabetes and traditional therapy. Diabetes Metab. J. 18: S61-S64 (1994)
  17. Kim OK, Oak CH, Jeong JM, Lee JW, Shin MH, Kim NH. A caseof metformin-induced lactic acidosis with acute kidney injurymisdiagnosed as hepatorenal syndrome in a cirrhosis patient. Korean J. Med. 82: 241-246 (2012) https://doi.org/10.3904/kjm.2012.82.2.241
  18. Kim SK, Kim CK, Lee KS, Kim JH, Hwang Hj, Jeoung Di, Choe JS, Won MH, Lee HS, Ha YG, Kwon YG, Kim YM. Aqueous extract of unripe Rubus coreanus fruit attenuates atherosclerosis by improving blood lipid profile and inhibiting NF-kB activation via phase II gene expression. J. Ethnopharmacol. 146: 515-524 (2013) https://doi.org/10.1016/j.jep.2013.01.016
  19. Kim TG, Park MS, Han HM, Kang SY, Jung KK, Rheu HM, Kim SH. Inhibitory effects of Terminalia chebula, Sanguisorba officinalis, Rubus coreanus and Rheum palmatum on Hepatitis B virus replication in HepG2 2.2.15 cells. Yakhak Hoeji. 43: 458-463 (1999)
  20. Kim TW, Kwon YB, Lee JH, Yang IS, Youm JK, Lee HS. A study on the antidiabetic effect of mulberry fruits. Korean J. Seric. Sci. 38: 100-107 (1996)
  21. Kwon JW, Lee HK, park HJ, Kwon TO, Choi HR and Song JY. Screening of biologocal activities to different ethanol extracts of Rubus coreacus Miq. Korean J. Medicinal Crop Sci. 19: 325-333 (2011) https://doi.org/10.7783/KJMCS.2011.19.5.325
  22. Lee JH, Choi HR, Lee SJ, Lee MJ, Jang JE, Kwon JW, Lee HK, Jeong JT, Lee TB. Anti-hypertensive effects of Black Raspberry (Rubus occidentalis) in spontaneouly hypertensive rats (SHR). J. Korean Soc. Food Sci. Nutr. 44: 483-490 (2015) https://doi.org/10.3746/jkfn.2015.44.4.483
  23. Lee JH, Choi HR, Lee SJ, Lee MJ, Ko YJ, Kwon JW et al. Blood pressure modulating effects of Black Raspberry extracts in vitro and in vivo. Korean J. Food Sci. Technol. 46: 375-384 (2014a) https://doi.org/10.9721/KJFST.2014.46.3.375
  24. Lee JH, Jeong KO, Im SY, Lee SJ. Analytical method validation of ellagic acid as an antioxidative marker compound of the Rubus occidentalis extract. Korean J. Food Preserv. 28: 663-673 (2021) https://doi.org/10.11002/kjfp.2021.28.5.663
  25. Lee MK, Lee HS, Choi Gp, Oh DH, Kim JD, Yu CY, Lee HY. Screening of biological activities of the extracts from Rubus coreanus Miq. Korean J. Medicinal Crop Sci. 11: 5-12 (2003)
  26. Lee MJ, Lee SJ, Choi HR, Lee JH, Kwon JW. Chae KS, Jeong JT, Lee TB. Improvement of cholesterol and blood pressure in fyuit, leaf and stem extracts from Black Raspberry in vitro. Korean J. Medicinal Crop Sci. 22: 177-187 (2014b) https://doi.org/10.7783/KJMCS.2014.22.3.177
  27. Le Floch JP, Escuyer P, Baudin E, Baudon D, Perlemuter L. Blood glucose area under the curve: Methodological aspects. Diabetes Care 13: 172-175 (1990) https://doi.org/10.2337/diacare.13.2.172
  28. Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm p, Rooyackers O, Zhou G, Willamson JM, Ljuqvist O, Efendic S, Moller DE, Thorell A, Goodear LJ. Metformin increases AMp-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51: 2074-2081 (2002) https://doi.org/10.2337/diabetes.51.7.2074
  29. Noh JH, Hong SH, Lee KH, Min KM, Yang TY, Lee MS, Kim KW, Lee MK. Thiazolidinediones on insulin resistance and insulin secretion in obese diabetix OLETF rats. J. Korean Diabetes 31: 33-43 (2007) https://doi.org/10.4093/jkda.2007.31.1.33
  30. Park KH, Kang SY, Kang A, Jung HW, park YK. Anti-diabetic effects of the extract from Atractylodes lancea, Anemarrhena asphodeloides and Cinnamomum Cassia mixture in high fat diet-induced diabetic mice and regulation of the function in C2C12 mouse skeletal muscle cells. Kor. J. Herbol. 34: 79-89 (2019)
  31. Pyorala K, Laakso M, Unsitupa M. Diab & athersclerosis: An epidemiologic view. Diab. Metab. Rev. 3: 453-524 (1987)
  32. Rhee BD. Diabetes and hyperlipidemia. J. Korea Diabetes 14: 13-22 (1990)
  33. Son HY. Lipid metabolism in diabetes mellitus. J. Korean Diabetes 9: 159-164 (1985)
  34. Yoon I, Cho JY, Kuk JH, Wee JH, Jang MY, Ahn TH, Park KH. Identification and activity of antioxidative compounds from Rubus coreanum fruit. Korean J. Food Sci. Technol. 34: 898-904 (2002)
  35. Young IR, Stout RW. Effects of insulin and glucose on the cells of the arterial wall : Interaction of insulin with dibutyryl cyclic AMP and low density lipoprotein in arterial cells. Diabetes 13: 301-306 (1987)
  36. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: Estimates for the 2000 and projection for 2030. Diabetes Care 27: 1047-1053 (2004) https://doi.org/10.2337/diacare.27.5.1047
  37. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Miller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167-1174 (2001) https://doi.org/10.1172/JCI13505