DOI QR코드

DOI QR Code

Dietary fiber content and physicochemical properties of starch isolated from potato cultivars

감자 품종에 따른 식이섬유 및 전분의 이화학적 특성

  • Kim, Hyun-Joo (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Choi, Jang Gyu (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Byong Won (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Han, Narae (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Jin Young (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Yu-Young (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Mihyang (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Kang, Moon Seok (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration)
  • 김현주 (국립식량과학원 중부작물부 수확후이용과) ;
  • 최장규 (국립식량과학원 고령지농업연구소) ;
  • 이병원 (국립식량과학원 남부작물부 밭작물개발과) ;
  • 한나래 (국립식량과학원 중부작물부 수확후이용과) ;
  • 이진영 (국립식량과학원 중부작물부 수확후이용과) ;
  • 이유영 (국립식량과학원 중부작물부 수확후이용과) ;
  • 김미향 (국립식량과학원 중부작물부 수확후이용과) ;
  • 강문석 (국립식량과학원 중부작물부 수확후이용과)
  • Received : 2022.06.07
  • Accepted : 2022.08.08
  • Published : 2022.08.31

Abstract

This study examined the dietary fiber content of potato and physicochemical characteristics of potato starch isolated from various cultivars. The total dietary fiber content of the Arirang1ho cultivar was 6.30%, which was higher than that of other cultivars. The amylose content ranged from 36.76-55.75%, with Sooseon having the highest amylose content. Analysis of the degree of amylopectin polymerization revealed that all cultivars had a high proportion of DP (degree of polymerization) 13-24. The phosphate content ranged from 45.90-84.23 mg/100 g, with Arirang1ho having the highest and Eunseon having the lowest phosphate content. The resistant starch content ranged from 58.94-79.87%. Geumseon showed the highest breakdown in the range of 587.45-1,129.72 RVU (rapid viscosity unit). Sooseon had the lowest gelatinization enthalpy value for potato starch in the range of 5.54-7.64 J/g. These results provide basic data for the use of potatoes in industrial applications.

본 연구는 감자를 산업소재로서의 이용가능성을 높이기 위한 기초자료를 확보하기 위해 국내에서 육성된 감자 24품종을 이용하여 식이섬유 함량을 비교 분석한 다음, 품종별로 전분을 추출하여 이화학적 특성을 관찰하였다. 감자 원료의 총 식이섬유 함량을 분석한 결과 아리랑1호 품종이 6.30%로 가장 높은 식이섬유 함량을 보였다. 감자 품종별로 전분을 추출한 다음 아밀로스 함량을 측정한 결과 36.76-55.75%로 수선 품종이 가장 높았고. 아밀로펙틴 가지사슬길이 분포가 DP13-24가 약 60% 이하로 가장 많은 비율을 보였다. 인 함량을 분석한 결과 45.90-84.23 mg/100 g의 범위로 아리랑1호 품종이 가장 높고, 은선이 가장 낮았다. 감자 전분에 함유된 저항전분 함량은 58.94-79.87% 범위로 아리랑2호가 가장 높은 함량을 보였다. 호화 점도 특성을 분석한 결과, 강하점도의 경우 587.45-1,129.72 RVU 범위로 금선이 가장 높았고, 치반 점도는 -864.31- -353.22 RVU 범위로 금선이 가장 낮았다. 감자 전분의 품종별 호화엔탈피 값을 분석한 결과, 5.54-7.64 J/g의 범위로 수선이 가장 낮았고, 다미가 다른 품종에 비해 높은 값을 보였다. 본 연구결과를 통해 국내산 감자전분의 산업소재로서 다양하게 이용하기 위한 기초자료로 이용될 수 있을 것으로 판단되며, 보다 많은 자료 확보를 위해 재배 및 저장 조건 등에 따른 전분 특성에 관한 연구가 지속적으로 진행되어야 한다고 생각된다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 AGENDA 연구사업(과제번호: PJ01196302)의 지원에 의해 이루어진 것임.

References

  1. AOAC. Official methods of analysis. 16th ed. Association of Official Analysis Chemists, Washington DC, USA (1995)
  2. Cheetham NWH, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr. Polym. 36: 277-284 (1998) https://doi.org/10.1016/S0144-8617(98)00007-1
  3. Cho DH, Park HY, Lee SK, Park JY, Choi HS, Woo KS, Kim HJ, Sim EY, Won YJ, Lee DH, Oh SK. Differences in physicochemical and textural properties of germinated brown rice in various rice varieties. Korean J. Crop Sci. 62: 172-183 (2017)
  4. Choi HD, Lee HC, Kim SS, Kim YS, Lim HT, Ryu KH. Nutrient components and physicochemical properties of new domestic potato cultivars. Korean J. Food Sci. Technol. 40: 382-388 (2008)
  5. Choi I, Chun J, Choi HS, Park J, Kim NG, Lee SK, Park JH, Jeong KH, Nam JH, Cho K. Starch characteristics, sugars and thermal properties of processing potato (Solanum tuberosum L.) cultivars developed in Korea. American J. Potato Res. 97: 308-317 (2020) https://doi.org/10.1007/s12230-020-09779-z
  6. Chun IJ, Kim HS. Influence of starch characteristics on the pasting properties of potato flours prepared from yellow-fleshed potatoes. Food Eng. Prog. 18: 398-405 (2014) https://doi.org/10.13050/foodengprog.2014.18.4.398
  7. Chung HJ. Development and industrial application of low-calorie food ingredients derived from starches. Food Sci. Ind. 52: 358-374 (2019)
  8. Chung HJ, Lim ST. Relationship between starch digestibility and its structure. Food Sci. Ind. 47: 21-32 (2014)
  9. Collado LS, Mabesa RC, Corke H. Genetic variation in the physical properties of sweet potato starch. J. Agric. Food Chem. 47: 4195-4201 (1999) https://doi.org/10.1021/jf990110t
  10. Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46: S33-S50 (1992)
  11. Gomand SV, Lamberts L, Visser RGF, Delcour JA. Physicochemical properties of potato and cassava starches and their mutants in relation to their structural properties. Food Hydrocoll. 24: 424-433 (2010) https://doi.org/10.1016/j.foodhyd.2009.11.009
  12. Han JS, Lee SM. Improvement of surimi seafood using modified food starches. Food Sci. Ind. 47: 33-38 (2014)
  13. Jang HL, Yoon KY. Biological activities and total phenolic content of ethanol extracts of white and flesh-colored Solanum tuberosum L. potatoes. J. Korean Soc. Food Sci. Nutr. 41: 1035-1040 (2012) https://doi.org/10.3746/jkfn.2012.41.8.1035
  14. Jin YX, Kim SM, Kim SN, Kim HR, Kim SC, Hwang J, Choi Y. Food composition of raw and boiled potatoes. Korean J. Food Cook. Sci. 32: 517-523 (2016) https://doi.org/10.9724/kfcs.2016.32.4.517
  15. Juliano BO. Polysaccharide, proteins, and lipids of rice. pp. 59-120. In: Rice chemistry and technology. Juliano BO, Fairchild HD (ed). The American Association of Cereal Chemists, Inc., St. Paul, MN, USA (1985)
  16. Kahraman K, Koksel H, Ng PKW. Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content. Food Chem. 174: 173-179 (2015) https://doi.org/10.1016/j.foodchem.2014.11.032
  17. Kaur A, Singh N, Ezekiel R, Guraya HS. Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chem. 101: 643-651 (2007) https://doi.org/10.1016/j.foodchem.2006.01.054
  18. Kim KA, Kim SM, Jung LH. Comparison of physicochemical properties of several Korean potato starches. Korean J. Soc. Food Sci. 5: 53-62 (1989)
  19. Kim HR, Kim MJ, Yang YH, Lee KJ, Kim MR. Effect of grain size on the physicochemical & nutritional properties of beef porridge. Korean J. Food Cul. 25: 70-75 (2010)
  20. Kim HJ, Woo KS, Lee BW, Lee JY, Lee YY, Kim MY, Kim M, Lee B. Starch characteristics of foxtail millet and sorghum cultivars grown in Korea. Korean J. Food Sci. Technol. 52: 220-225 (2020)
  21. Kowittaya C, Lumdubwong N. Molecular weight, chain profile of rice amylopectin and starch pasting properties. Carbohydr. Polym. 108: 216-223 (2014) https://doi.org/10.1016/j.carbpol.2014.02.081
  22. Kwon OY, Kim MY, Son CW, Liu XW, Kim HC, Yoon WK, Kim HM, Kim MR. Protein and amino acid composition of domestic potato cultivars. J. Korean Soc. Food Sci. Nutr. 37: 117-123 (2008) https://doi.org/10.3746/jkfn.2008.37.1.117
  23. Lee J, Choi M, Kang J, Chung Y, Jin YI, Kim M, Lee Y, Chang YH. Physicochemical, structural, pasting, and rheological properties of potato starch isolated from different cultivars. Korean J. Food Sci. Technol. 49: 360-368 (2017a)
  24. Lee YJ, Jeong JC, Yoon YH, Hong SY, Kim SJ, Jin YI, Nam JH, Kwon OK. Evaluation of quality characteristics and definition of utilization category in Korean potato (Solanum tuberosum L.) cultivars. Korean J. Crop Sci. 57: 271-279 (2012) https://doi.org/10.7740/kjcs.2012.57.3.271
  25. Lee S, Lee EJ, Chung HJ. Structural and physicochemical characterization of starch from Korean rice cultivars for special uses. Korean J. Food Sci. Technol. 49: 1-7 (2017b) https://doi.org/10.9721/KJFST.2017.49.1.1
  26. Lim ST, Lee JH, Shin DH, Lim HS. Comparison of protein extraction solutions for rice starch isolation and effects of residual protein content on starch pasting properties. Starch 51: 120-125 (1999) https://doi.org/10.1002/(SICI)1521-379X(199904)51:4<120::AID-STAR120>3.0.CO;2-A
  27. Liu Q, Tarn R, Lynch D, Skjodt NM. Physicochemical properties of dry matter and starch from potatoes grown in Canada. Food Chem. 105: 897-907 (2007) https://doi.org/10.1016/j.foodchem.2007.04.034
  28. Margareta Leeman A, Karlsson ME, Eliasson AC, Bjorck, IME. Resistant starch formation in temperature treated potato starches varying in amylose/amylopectin ratio. Carbohydr. Polym. 65: 306-313 (2006) https://doi.org/10.1016/j.carbpol.2006.01.019
  29. McCleary BV, McNally BV, Rossiter P. Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: collaborative study. J. AOAC Int. 85: 1103-1111 (2002) https://doi.org/10.1093/jaoac/85.5.1103
  30. Mclntosh GH. Experimental studies of dietary fiber and colon cancer-an overview. pp. 165-178. In: Dietary fibre: Bio-active carbohydrates for food and feed. Van Der Kamp JW, Asp NG, Jones JM, Schaafsma G (ed). Wageningen Academic Press, Wageningen, Netherlands (2004)
  31. Noda T, Tsuda S, Mori M, Takigawa S, Endo CM, Hashimoto N, Yamauchi H. Properties of starches from potato varieties grown in Hokkaido. J. Appl. Glycosci. 51: 241-246 (2004a) https://doi.org/10.5458/jag.51.241
  32. Noda T, Tsuda S, Mori M, Takigawa S, Matsuura-Endo, C, Saito K, Mangalika WHA, Hanaoka A, Suzuki Y, Yamauchi H. The effect of harvest dates on the starch properties of various potato cultivars. Food Chem. 86: 119-125 (2004b) https://doi.org/10.1016/j.foodchem.2003.09.035
  33. Oh HI, Ly SY. A Study on nutritional characteristics of common Korean dietary fiber rich foo. J. Korean Soc. Food Sci. Nutr. 27: 296-304 (1998)
  34. Pang Z, Cong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques PE, Li S, Xia J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acid Res. 49: 388-396 (2021)
  35. Sajilata MG, Singhal RS, Kulkarui PR. Resistant starch- A review. Compr. Rev. Food Sci. Food Saf. 5: 1-17 (2006). https://doi.org/10.1111/j.1541-4337.2006.tb00076.x
  36. Singh R, Kaur S, Aggarwal P. Exploration of potato starches from non-commercial cultivars in ready to cook instant non cereal, non glutinous pudding mix. LWT-Food Sci. Technol. 150: 111966 (2021) https://doi.org/10.1016/j.lwt.2021.111966
  37. Swinkels JJM. Composition and properties of commercial native starches. Starch/Strke 37: 1-5 (1985) https://doi.org/10.1002/star.19850370102
  38. Vasanthan T, Bergthaller W, Driedger D, Yeung J, Sporns P. Starch from Alberta potatoes: wet-isolation and some physicochemical properties. Food Res. Int. 32: 355-365 (1999) https://doi.org/10.1016/S0963-9969(99)00096-4
  39. Woo KS, Lee J, Lee BW, Lee YY, Lee B, Kim HJ. 2019. Starch characteristics of mung bean cultivars grown in Korea. Korean J. Food Cook Sci. 35: 125-131 (2019) https://doi.org/10.9724/kfcs.2019.35.2.125
  40. You SY, Lee EJ, Chung HJ. Study of molecular and crystalline structure and physicochemical properties of rice starch with varying amylose content. Korean J. Food Sci. Technol. 46: 682-688 (2014) https://doi.org/10.9721/KJFST.2014.46.6.682
  41. Zhu F, Hao C. Molecular structure of Maori potato starch. Food Hydrocoll. 80: 206-211 (2018) https://doi.org/10.1016/j.foodhyd.2018.02.004