DOI QR코드

DOI QR Code

Quality characteristics of kombucha made with saccharified rice solution

쌀당화액을 이용한 콤부차의 품질 특성

  • Lee, Dae-Hyoung (Gyeong gi-do Agricultural Research Extension Services) ;
  • Seo, Jae-Soon (Gyeong gi-do Agricultural Research Extension Services) ;
  • Shin, Bok-Eum (Gyeong gi-do Agricultural Research Extension Services) ;
  • Lee, Yong Seon (Gyeong gi-do Agricultural Research Extension Services) ;
  • Cho, Chang Hui (Gyeong gi-do Agricultural Research Extension Services)
  • 이대형 (경기도농업기술원 작물연구과) ;
  • 서재순 (경기도농업기술원 작물연구과) ;
  • 신복음 (경기도농업기술원 작물연구과) ;
  • 이용선 (경기도농업기술원 작물연구과) ;
  • 조창휘 (경기도농업기술원 작물연구과)
  • Received : 2022.07.15
  • Accepted : 2022.08.09
  • Published : 2022.08.31

Abstract

In this study, kombucha was prepared using saccharified rice solution to assess this possible means of increasing rice consumption. Chucheong rice yielded the highest starch content (80.40±1.33%) when used to produce saccharified rice solution. The resultant saccharified rice solution showed the highest 10.42 °Brix at 90 min of saccharification. Chamdream rice yielded the highest acidity at 0.38%, and Kawaji No.1 yielded the lowest at 0.24%. Organic acid analysis on the 15th day of fermenting kombucha made with different rice varieties indicated an acetic acid content of 111.70±1.09 ppm in Chamdream, and 46.86±1.00 ppm in Dongjinchal. Comparison of enzymes used in saccharified rice kombucha fermentation revealed that α-amylase resulted in the highest acidity (1.06%), and β-amylase yielded the lowest acidity (0.58%). Kombucha with green tea yielded the highest acidity (1.09%), and kombucha with rooibos tea yielded the lowest (0.37%). Polyphenol analysis indicated that the amount of polyphenol increased the most (1,623.75 ppm to 3,989.00 ppm) on day 0 of fermentation with green tea. Organic acid analysis revealed that the acetic acid content of kombucha supplemented with green tea increased from 172.89 ppm on day 0 of fermentation to 2,649.11 ppm on day 15. Kombucha with 2.0% added alcohol had the highest acidity (1.32%), and kombucha with 0.5% alcohol had the lowest (0.97%). Taken together, these results confirm that it is possible to make kombucha using saccharified rice solutions.

본 연구에서는 쌀의 소비를 증가시키기 위해 쌀을 당화시킨 쌀당화액을 이용해 콤부차를 제조하였다. 쌀 품종별 당화액 및 콤부차 제조 특성으로는 멥쌀은 참드림, 보람찬, 추청을 사용했으며 중간찰벼로 가와지1호, 찹쌀로 동진찰벼를 이용했다. 쌀 당화에 있어 가장 중요한 전분 함량은 가장 높은 것이 추청으로 80.40±1.33%를 나타내었으며 당화액 분석결과 90분 당화시 가장 높은 10.42°Brix를 나타내었다. 산도는 참드림이 0.38%로 가장 높았으며 가와지1호가 0.24%로 가장 낮았다. 쌀 품종별 콤부차의 발효 15일 유기산 분석결과 acetic acid는 참드림이 111.70±1.09 ppm이었으며 동진찰벼는 46.86±1.00 ppm이었다. 효소 종류에 따른 쌀당화액 콤부차 특성으로는 α-amylase를 처리한 쌀당화액이 1.06%로 가장 높았으며 β-amylase가 0.58%로 가장 낮은 산도를 나타내었다. 차 종류별 콤부차 특성에서는 녹차 첨가 콤부차의 산도가 1.09%로 가장 높았으며 루이보스 첨가 콤부차가 0.37%로 가장 낮았다. Polyphenol 분석결과에서 녹차를 이용한 발효 0일에 1,623.75 ppm에서 3,989.00 ppm으로 가장 많이 증가하였다. 유기산 분석에서 녹차첨가 콤부차가 acetic acid가 발효 0일에는 172.89 ppm에서 발효 15일에는 2,649.11 ppm으로 증가하였다. 알코올(주정) 첨가 콤부차 특성에서는 알코올 2.0% 첨가 콤부차의 산도가 1.32%로 가장 높았으며 알코올 0.5% 첨가 콤부차가 0.97%로 가장 낮았다. 이러한 결과를 종합해볼 때 새로운 쌀 음료로써 쌀당화액을 이용해서 콤부차를 만드는 것이 가능하다는 것을 확인할 수 있었다.

Keywords

References

  1. An JO. Characteristics of korean rice liquor made from different rice pre-treatments. PhD thesis, Sejong University, Seoul, Korea (2018)
  2. AOAC. Official Methods of Analysis of AOAC Intl. 16th ed, Method 991.43. Association of Official Analytical Communities, Arlington, VA, USA (1995)
  3. Cha JY, Kim HJ, Chung CH, Cho YS. Antioxidative activities and contents of polyphenolic compound of Cudrania tricuspidata. J. Korean Soc. Food Sci. Nutr. 28: 1310-1315 (1999)
  4. Chen C, Liu BY. Changes in major components of tea fungus metabolites during prolonged fermentation. J. Appl. Microbiol. 89: 834-839 (2000) https://doi.org/10.1046/j.1365-2672.2000.01188.x
  5. Dutta H, Paul SK. Kombucha drink: production, quality, and safety aspects. Production and management of beverages. 1st ed. Woodhead publishing, Sawston, United Kingdom. pp 259-288 (2019)
  6. Faulds C, Robertson J, Waldron K. Effect of pH on the solubilization of brewers' spent grain by microbial carbohydrates and proteases. J. Agric. Food Chem. 56: 7038-7048 (2008) https://doi.org/10.1021/jf800433c
  7. Gaggia F, Baffoni L, Galiano M, Nielsen D, Jakobsen R, Castro-Mejia J, Bosi S, Truzzi F, Musumeci F, Dinelli G, Di Gioia D. Kombucha beverage from green, black and rooibos teas: A comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients. 11: 1-22 (2019)
  8. Gil NY, Kim SY, Choi HS, Park SY, Kim JH. Investigation of quality characteristics and alcohol content in commercial Korean fermented sources. Korean J. Food Preserv. 23: 341-346 (2016) https://doi.org/10.11002/kjfp.2016.23.3.341
  9. Hwang IG, Yang JW, Kim JY, Yoo SM, Kim GC, Kim JS. Quality characteristics of saccharified rice gruel prepared with different cereal koji. J. Korean Soc. Food Sci. Nutr. 40: 1617-1622 (2011) https://doi.org/10.3746/jkfn.2011.40.11.1617
  10. Jayabalan R, Marimuthu S, Swaminathan K. Changes in content of organic acid and tea polyphenols during kombucha tea fermentation. Food Chem. 102: 392-398 (2007) https://doi.org/10.1016/j.foodchem.2006.05.032
  11. Kim YH. A study on quality characteristics and consumer preference of tea according to the degree of fermentation. MS Thesis, Chungwoon University, Korea, p. 85 (2013)
  12. Kim ML, Choi MA. Development of fermented acidic beverage using wild grape juice. Korean J. Food Prese. 18: 46-52 (2011) https://doi.org/10.11002/kjfp.2011.18.1.046
  13. Kim JY, Shin HJ, Kim HJ, Park H, Kim PK, Park S, Kim SH. The compositional and functional properties of kombucha: A literature review. Food Eng. Prog. 24: 1-14 (2020) https://doi.org/10.13050/foodengprog.2020.24.1.1
  14. Ko HM, Shin SS, Park SS. Biological activities of Kombucha by stater culture fermentation with Gluconacetobacter spp. J. Korean Soc. Food Sci. Nutr. 46: 896-902 (2017)
  15. Korea Agro-Fisheries & Food Trade Corporation. 2020 Processed Food Segmentation Market Report(Processed Rice Food). Korea Agro-Fisheries & Food Trade Corporation. pp. 37-42 (2021)
  16. Lee DH, Kim JH, Lee JS. Effect of pears on the quality and physiological functionality of makgeoly. Korean J. Food Nutr. 22: 606-611 (2009)
  17. Lee OS, Jang SY, Jeong YJ. Effect of ethanol on the production of cellulose and acetic acid by Gluconacetobacter persimmonis KJ145. J. Korean Soc. Food Sci. Nutr. 32: 181-184 (2003) https://doi.org/10.3746/jkfn.2003.32.2.181
  18. Nakamura J, Hamada Y, Sakakibara F, Hara T, Wakao T, Mori K, Nakashima E, Naruse K, Kamijo M, Koh N, Hotta N. Physiological and morphometric analyses of neuropathy in sucrose-fed OLETF rats. Diabetes Res. Clin. Pr. 51: 9-20 (2001) https://doi.org/10.1016/S0168-8227(00)00205-9
  19. Pokalwar SU, Mishra MK, Manwar AV. Production of cellulose by Gluconacetobacter sp. Recent Res. Sci. Technol. 2: 14-19 (2010)
  20. Rural Development Administration (KR). Food composition table. 9th revision edition. Rural Development Administration. Suwon, Korea (2016)
  21. Silvia AV. Sandra B, Jalloul B, Jean-Pierre S, Patricia T. Understanding kombucha tea fermentation: A review. J. Food Sci. 83: 580-588 (2018) https://doi.org/10.1111/1750-3841.14068
  22. Woo HG, Lee CM, Jeong JH, Choi BK, Huh CK. Quality characteristics of kombucha made with different mixing ratios of green tea extract and yuzu juice during fermentation. Korean J. Food Preserv. 28: 646-653 (2021) https://doi.org/10.11002/kjfp.2021.28.5.646