DOI QR코드

DOI QR Code

Effects of Panicle Position and Planting Density on the Physicochemical Properties of Starch in Panicle Number Type Rice

  • Han, Chae-Min (Division of Crops Research, Gyeongsangbuk-do Provincial Agricultural Research & Extension Services) ;
  • Shin, Jong-Hee (Division of Crops Research, Gyeongsangbuk-do Provincial Agricultural Research & Extension Services) ;
  • Kwon, Jung-Bae (Division of Crops Research, Gyeongsangbuk-do Provincial Agricultural Research & Extension Services) ;
  • Kim, Sang-Kuk (Division of Crops Research, Gyeongsangbuk-do Provincial Agricultural Research & Extension Services) ;
  • Won, Jong-Gun (Division of Crops Research, Gyeongsangbuk-do Provincial Agricultural Research & Extension Services) ;
  • Ryu, Jung-Gi (Division of Crops Research, Gyeongsangbuk-do Provincial Agricultural Research & Extension Services)
  • Received : 2022.07.11
  • Accepted : 2022.08.21
  • Published : 2022.09.01

Abstract

The tillering potential of panicle number type (PNT) rice greatly varies with planting density. Moreover, grain filling and ripening differ depending on the panicle position, which may further affect rice grain quality. The present study evaluated the grain quality of PNT rice sparsely planted to reduce production costs. The physicochemical characteristics of starch from the grains of PNT type rice 'Ilpum' planted at different densities (37, 50, 60, and 80 plants/3.3 m2) and at different positions of panicles (upper or lower on the culm) were determined. Overall, as the planting density decreased, the number of panicles increased but the starch content decreased, which further reduced the 1,000-grain weight. In particular, at the lowest density (37 plants/3.3 m2), protein content increased but particle size, enthalpy, and relative crystallinity decreased. The effects were more pronounced at lower than at upper panicle positions. These findings indicate that tillering potential differs with planting density, ultimately affecting the palatability of rice grains. Based on these findings, we propose restricting rice transplantation to a planting density of ≤37 plants/3.3 m2 to achieve the best quality of grains at lower costs and with less labor.

Keywords

Acknowledgement

This study was supported by the "Cooperative Research Program for Agriculture Science and Technology Development" (Project No. PJ01488610), from the Rural Development Administration of the Republic of Korea.

References

  1. Baloch, A. W., A. M. Soomro, M. A. Javed, M. Ahmed, H. R. Bughio, M. S. Bughio, and N. N. Mastoi. 2002. Optimum plant density for high yield in rice (Oryza sativa L.). Asian Journal of Plant Science 1(1) : 25-27.
  2. Bogracheva, T. Y., V. J. Morris, S. G. Ring, and C. L. Hedley. 1998. The granular structure of C-type pea starch and its role in gelatinization. Biopolymers 45(4) : 323-332. https://doi.org/10.1002/(SICI)1097-0282(19980405)45:4<323::AID-BIP6>3.0.CO;2-N
  3. Chen, F. Q., B. S. Zhang, Q. Huang, and H. F. Lu. 2010. Research progress of determination crystallinity of starch granular by X-ray diffraction. Science and Technology of Food Industry 1 : 432-435.
  4. Chiang, P. Y. and A. I. Yeh. 2002. Effect of soaking on wet-milling of rice. Journal of Cereal Science 35(1) : 85-94. https://doi.org/10.1006/jcrs.2001.0419
  5. Dou, Z., Y. Li, H. Guo, L. Chen, J. Jiang, Y. Zhou, Q. Xu, Z. Xing, H. Gao, and H. Zhang. 2021. Effects of mechanically transplanting methods and planting densities on yield and quality of nanjing 2728 under rice-crayfish continuous production system. Agronomy 11(3) : 488 https://doi.org/10.3390/agronomy11030488
  6. Gabbott, P. 2008. Principles and Applications of Thermal Analysis. John Wiley & Sons, Chichester, UK. Blackwell Publishing Ltd. pp. 1-388.
  7. Goldstein, A., G. Annor, V. Vamadevan, I. Tetlow, J. J. K. Kirkensgaard, K. Mortensen, A. Blennow, K. H. Hebelstrup, and E. Bertoft. 2017. Influence of diurnal photosynthetic activity on the morphology, structure, and thermal properties of normal and waxy barley starch. International Journal of Biological Macromolecules 98 : 188-200. https://doi.org/10.1016/j.ijbiomac.2017.01.118
  8. Han, C. M., J. H. Shin, J. B. Kwon, J. S. Kim, J. G. Won, and J. S. Kim. 2021. Comparison of morphological and physicochemical properties of a floury rice variety upon pre-harvest sprouting. Foods 10(4) : 746. https://doi.org/10.3390/foods10040746
  9. Han, C. M. 2021. Effects of Pre-harvest Sprouting and Nitrogen Fertilization on Morphological and Physicochemical Properties of Floury Rice Powder and Starch. Kyungpook National University Press, Korea, pp.77
  10. Han, H. M., J. H. Cho, H. W. Kang, and B. K. Koh. 2012. Rice varieties in relation to rice bread quality. Journal of the Science of Food and Agriculture 92(7) : 1462-1467. https://doi.org/10.1002/jsfa.4727
  11. Hwang, W., J. Jeong, H. Lee, S. Yang, and C. Lee. 2021. Seeding rate and days for low-density transplant cultivation. Korean Journal of Crop Science 66(2) : 112-119. https://doi.org/10.7740/KJCS.2021.66.2.112
  12. Imberty, A., A. Buleon, V. Tran, and S. Peerez. 1991. Recent advances in knowledge of starch structure. Starch-Starke 43(10) : 375-384. https://doi.org/10.1002/star.19910431002
  13. Juliano, B. O. 1965. Relation of starch composition, protein content, and gelatinization temperature to cooking and eating qualities of milled rice. Food Technol 19 : 1006-1011.
  14. Juliano, B. O., C. M. Perez, E. P. Alyoshin, V. B. Romanov, M. M. Bean, K. D. Nishita, A. B. Blakeney, L. A. Welsh, L. L. Delgado, A.W. El Baya, G. Fossati, N. Kongseree, F. P. Mendes, S. Brilhante, H. Suzuki, M. Tada, and B. D. Webb. 1985. Cooperative test on amylography of milled-rice flour for pasting viscosity and starch gelatinization temperature. Starch-Starke 37(2) : 40-50. https://doi.org/10.1002/star.19850370203
  15. Kakar, K., Y. Nitta, N. Asagi, M. Komatsuzaki, F. Shiotsu, T. Kokubo and T. D. Xuan. 2019. Morphological analysis on comparison of organic and chemical fertilizers on grain quality of rice at different planting densities. Plant Production Science 22(4) : 510-518. https://doi.org/10.1080/1343943X.2019.1657777
  16. Kim, S. S., K. A. Kang, S. Y. Choi, and Y. T. Lee. 2005. Effect of elevated steeping temperature on properties of wet-milled rice flour. Journal of the Korean Society of Food Science and Nutrition 34(3) : 414-419. https://doi.org/10.3746/JKFN.2005.34.3.414
  17. Martin, M. and M. A. Fitzgerald. 2002. Proteins in rice grains influence cooking properties! Journal of Cereal Science. 36(3) : 285-294. https://doi.org/10.1006/jcrs.2001.0465
  18. Mobasser, H. R., M. M. Delarestaghi, A. Khorgami, D. B. Tari, and H. Pourkalhor. 2007. Effect of planting density on agronomical characteristics of rice (Oryza sativa L.) varieties in north of Iran. Pakistan Journal of Biological Science 10(18) : 3205-3209. https://doi.org/10.3923/pjbs.2007.3205.3209
  19. Moradpour, S., R. Koohi, M. Babaei, and M. G. Khorshidi. 2013. Effect of planting date and planting density on rice yield and growth analysis (Fajr variety). International Journal of Agriculture and Crop Science 5(3) : 267.
  20. Nakano, H., S. Morita, H. Kitagawa, H. Wada, and M. Takahashi. 2012. Grain yield response to planting density in forage rice with a large number of spikelets. Crop Science 52(1) : 345-350. https://doi.org/10.2135/cropsci2011.02.0071
  21. Saju, S. M. and N. Thavaprakaash. 2020. Influence of High Density Planting under Modified System of Rice Intensification on Growth, Root Characteristics and Yield of Rice in Western zone of Tamil Nadu. Madras Agricultural Journal 107(1-3) : 3376-3380.
  22. Sevenou, O., S. E. Hill, I. A. Farhat, and J. R. Mitchell. 2002. Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules 31(1) : 79-85. https://doi.org/10.1016/S0141-8130(02)00067-3
  23. Sterling, C. 1978. Textural qualities and molecular structure of starch products. Journal of Texture Studies 9(3) : 225-255. https://doi.org/10.1111/j.1745-4603.1978.tb01202.x
  24. Syahariza, Z. A., S. Sar, J. Hasjim, M. J. Tizzotti, and R. G. Gilbert. 2013. The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains. Food Chemistry 136(2) : 742-749. https://doi.org/10.1016/j.foodchem.2012.08.053
  25. Uddin, M. J., S. Ahmed, M. H. Rashid, M. M. Hasan, and M. Asaduzzaman. 2011. Effect of spacings on the yield and yield attributes of transplanted aman rice cultivars in medium lowland ecosystem of Bangladesh. Journal of Agricultural Research 49(4) : 465-476.
  26. Vamadevan, V. and E. Bertoft. 2020. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocolloid 103 : 105663. https://doi.org/10.1016/j.foodhyd.2020.105663
  27. Wang, F., F. Cheng, and G. Zhang. 2007. Difference in grain yield and quality among tillers in rice genotypes differing in tillering capacity. Rice Science 14(2) : 135-140. https://doi.org/10.1016/S1672-6308(07)60019-5
  28. Yamamoto, A. and K. Shirakawa. 1999. Annealing of long-term stored rice grains improves gelatinization properties. Cereal Chemistry 76(5) : 646-649. https://doi.org/10.1094/CCHEM.1999.76.5.646
  29. Yang, S.Y., W. H. Hwang, J. H. Jeong, H. S. Lee, and C. G. Lee. 2021. Changes in growth and yield of different rice varieties under different planting densities in low-density transplanting cultivation. Korean Journal of Crop Science 66(4) : 279-288. https://doi.org/10.7740/KJCS.2021.66.4.279
  30. Yu, S., Y. Ma, L. Menager, and D. W. Sun. 2012. Physicochemical properties of starch and flour from different rice cultivars. Food and Bioprocess Technology 5(2) : 626-637. https://doi.org/10.1007/s11947-010-0330-8
  31. Zhu, L.J., Q. Q. Liu, J. D. Wilson, M. H. Gu, and Y. C. Shi. 2011. Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content. Carbohydrate Polymer 86(4) : 1751-1759. https://doi.org/10.1016/j.carbpol.2011.07.017