DOI QR코드

DOI QR Code

Greenhouse Gas Emission Reduction and Economic Benefit Evaluation of Carbon Mineralization Technology using CFBC Ash

순환유동층 석탄재를 이용한 탄소광물화 기술의 온실가스 배출 저감량 및 경제성 분석

  • Jung, Euntae (Mineral Processing & Metallurgy Research Center, Resources Utilization Research Division, Korea Institute of Geosciences and Mineral Resources) ;
  • Kim, Jeongyun (Mineral Processing & Metallurgy Research Center, Resources Utilization Research Division, Korea Institute of Geosciences and Mineral Resources)
  • 정은태 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 김정윤 (한국지질자원연구원 자원활용연구본부 자원회수연구센터)
  • Received : 2022.02.08
  • Accepted : 2022.06.20
  • Published : 2022.06.30

Abstract

This study analyzed the amount of carbon dioxide reduction and economic benefits of detailed processes of CO2 6,000 tons plant facilities with mineral carbonation technology using carbon dioxide and coal materials emitted from domestic circulating fluidized bed combustion power plants. Coal ash reacted with carbon dioxide through carbon mineralization facilities is produced as a complex carbonate and used as a construction material, accompanied by a greenhouse gas reduction. In addition, it is possible to generate profits from the sales of complex carbonates and carbon credits produced in the process. The actual carbon dioxide reduction per ton of complex carbonate production was calculated as 45.8 kgCO2eq, and the annual carbon dioxide reduction was calculated as 805.3 tonCO2, and the benefit-cost ratio (B/C Ratio) is 1.04, the internal rate return (IRR) is 10.65 % and the net present value (NPV) is KRW 24,713,465 won, which is considered economical. Carbon mineralization technology is one of the best solutions to reduce carbon dioxide considering future carbon dioxide reduction and economic potential.

탄소광물화 기술은 석탄재와 이산화탄소를 반응시켜 건설재료 등으로 활용이 가능한 복합탄산염 등의 부산물을 생산함과 동시에 이산화탄소를 탄산염에 고정화하여 온실가스 감축효과를 얻을 수 있는 기술로, 이산화탄소 감축 및 경제적 잠재력을 고려하면 국가 온실가스 감축 목표를 실현하기 위한 유용한 방안이 될 수 있다. 그러나 아직까지는 해당 기술의 이산화탄소 감축 성능과 환경적인 이점, 경제성 등에 대한 자료가 적어서 기술의 상용화 가능성에 대해서는 명확하지 않은 상태이다. 본 연구는 국내 순환유동층 발전소에서 발생되는 이산화탄소와 석탄재를 이용하는 이산화탄소 투입량 기준 6,000 tonCO2/년 규모의 탄소광물화 설비에 대해 이산화탄소 감축량 및 경제성 분석을 수행했다. 공정 분석 결과 1톤의 복합탄산염 생산 시 실질적인 이산화탄소 감축량은 약 45.8 kgCO2eq, 연간 약 805.3 tonCO2로 산정되었으며, 경제적 편익 분석 시 비용편익분석비(B/C Ratio)는 1.04, 내부수익률(IRR)은 10.65 %, 순현재가치(NPV)는 24,713,465 원으로 나타나, 탄소광물화 설비가 어느 정도 경제성을 확보하고 있는 것으로 분석되었다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부, 환경부, 산업통상자원부)의 재원으로 한국연구재단-탄소자원화 국가전략프로젝트사업의 지원을 받아 수행된 연구의 결과입니다(과제번호: NRF-2019M3D8A2112963).

References

  1. Han, J., 2012 : A study on the Urban Han-ok Base on Environmental-Friendliness and Characteristics of Passive Design, Master thesis, Incheon University.
  2. Korea Ministry, A strategy to promote carbon neutrality. https://www.korea.kr/archive/expDocView.do?docId=39241, May 27, 2022.
  3. Lee, W.-K., 2011 : Carbon Dioxide-reducible Biodegradable Polymers, Clean Technology, 17(3), pp.191-200. https://doi.org/10.7464/KSCT.2011.17.3.191
  4. Jeong, C. J., Song, H. W., Hong, B., et al., 2018 : A Study of Carbon Dioxide Reduction Through the Liquid Accelerated Carbonation Using Coal Ash, Journal of the Korean Society for Environmental Technology, 19(1), pp.1-9. https://doi.org/10.26511/JKSET.19.1.1
  5. Huijgen, W. J. J., Witkamp, G.-J. and Comans, R. N. J., 2006 : Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process, Chemical Engineering Science, 61(13), pp.4242-4251. https://doi.org/10.1016/j.ces.2006.01.048
  6. Nam, S.-Y., Um, N.-I. and Ahn, J.-W., 2014 : Quantitative Evaluation of CO2 Sequestration in Ca-rich Waste Mineral for Accelerated Carbonation, Journal of the Korean Ceramic Society, 51(2), pp.64-71. https://doi.org/10.4191/kcers.2014.51.2.64
  7. Punia, A., 2021 : Carbon dioxide sequestration by mines: implications for climate change, Climatic Change, 165(1-2), 10.
  8. Skocek, J., Zajac, M. and Ben Haha, M., 2020 : Carbon Capture and Utilization by mineralization of cement pastes derived from recycled concrete, Scientific Reports, 10(1), 5614.
  9. Snaebjornsdottir, S. O., Sigfusson, B., Marieni, C., et al., 2020 : Carbon dioxide storage through mineral carbonation, Nature Reviews Earth & Environment, 1(2), pp.90-102. https://doi.org/10.1038/s43017-019-0011-8
  10. Uliasz-Bochenczyk, A. and Mokrzycki, E., 2020 : The potential of FBC fly ashes to reduce CO2 emissions. Scientific Reports, 10(1), 9469.
  11. Liu, W., Teng, L., Rohani, S., et al., 2021 : CO2 mineral carbonation using industrial solid wastes: A review of recent developments, Chemical Engineering Journal, 416, 129093.
  12. Han, K., Rhee, C. and Chun, H., 2011 : Feasibility of Mineral Carbonation Technology as a CO2 Storage Measure Considering Domestic Industrial Environment, Korean Chemical Engineering Research, 49(2), pp.137-150. https://doi.org/10.9713/KCER.2011.49.2.137
  13. The Global CO2 Initiative, Global Roadmap for Implementing CO2 Utilization(2016), University of Michigan. https://www.globalco2initiative.org/, May 27, 2022.
  14. USGS, 2020 : Mineral commodity summaries 2020, p.204, USA.
  15. Song, H., Han, S.-J. and Wee, J.-H., 2014 : Mineral Carbonation of High Carbon Dioxide Composition Gases Using Wollastonite-distilled Water Suspension, Journal of Korean Society of Environmental Engineers, 36(5), pp.342-351. https://doi.org/10.4491/KSEE.2014.36.5.342
  16. Qin, L., Gao, X. and Li, Q., 2019 : Influences of coal fly ash containing ammonium salts on properties of cement paste, Journal of Environmental Management, 249, 109374.
  17. Tayara, L., 2012 : Feasibility Analysis for Carbon Capture and Utilization In Cement-Concrete Industries, McGill University.
  18. Stolaroff, J. K., Lowry, G. V. and Keith, D. W., 2005 : Using CaO- and MgO-rich industrial waste streams for carbon sequestration, Energy Conversion and Management, 46(5), pp.687-699. https://doi.org/10.1016/j.enconman.2004.05.009
  19. Mayoral, M. C., Andres, J. M. and Gimeno, M. P., 2013 : Optimization of mineral carbonation process for CO2 sequestration by lime-rich coal ashes, Fuel, 106, pp.448-454. https://doi.org/10.1016/j.fuel.2012.11.042
  20. Ukwattage, N. L., Ranjith, P. G., Yellishetty, M., et al., 2015 : A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration, Journal of Cleaner Production, 103, pp.665-674. https://doi.org/10.1016/j.jclepro.2014.03.005
  21. Lee, J. H., Lee, D. W. and Shim, J. G., 2015 : Development Status of CO2 Utilization Technology, The Korean Society of Industrial And Engineering Chemistry, 18(3), pp.28-40.
  22. Shim, J. G., 2016 : Current status of CCU technology development, KEPCO Journal on Electric Power and Energy, 2(4), pp.517-523. https://doi.org/10.18770/KEPCO.2016.02.04.517
  23. Jo, H. Y., Kim, J. H., Lee, Y. J., et al., 2012 : Evaluation of factors affecting mineral carbonation of CO2 using coal fly ash in aqueous solutions under ambient conditions, Chemical Engineering Journal, 183, pp.77-87. https://doi.org/10.1016/j.cej.2011.12.023
  24. Doosan Lentjes, 2021 : Starobeshevo circulating fluidised bed combustion.
  25. Barnes, I., 2015 : Operating experience of low grade fuels in circulating fluidised bed combustion (CFBC) boilers, p.68, IEA Clean Coal Centre.
  26. Baek, C.-S., Seo, J.-H., An, J.-H., et al., 2015 : A Review of Desulfurization Technology using Limestone in Circulating Fluidized Bed Boiler Type Power Plant, Journal of the Korean Institute of Resources Recycling, 24(5), pp.3-14. https://doi.org/10.7844/KIRR.2015.24.5.3
  27. Kim, Y.-M. and Lee, W.-H., 2018 : A Study on Methods for Developing by Nurturing Clean Thermal Power Generation Technology, Journal of Climate Change Research, 9(2), pp.197-207. https://doi.org/10.15531/KSCCR.2018.9.2.197
  28. Park, Y., 2015 : Developing the procedure for the uncertainty analysis and its reduction for GHG emission model output: Considering the contribution for the uncertainty and data quality, Ajou University.
  29. Lee, G. and Atsushi, I., 2004 : Life Cycle Assessment requirements and guidelines, pp.10-21.
  30. International Organization for Standardization, 2006 : Environmental management: life cycle assessment; requirements and guidelines, Geneva:ISO.
  31. EU, 2017 : Techno-economic assessment of the conditions for the development of a potential unconventional gas and oil industry: Review of experiences outside Europe and analysis of the European potential
  32. Korea Environmental Industry & Technology Institute, TEA(Techno-Economic Analysis) trend analysis. https://www.konetic.or.kr/insight/koneticreport_view.asp?unique_num=2477&tblNm=, May 27, 2022.
  33. Zimmermann, A. W., Wunderlich, J., Muller, L., et al., 2020 : Techno-economic assessment guidelines for CO2 utilization, Frontiers in Energy Research, 5.
  34. Park, S., Ryu, J. and Sohn, G., 2020 : Techno-economic Analysis (TEA) on Hybrid Process for Hydrogen Production Combined with Biomass Gasification Using Oxygen Released from the Water Electrolysis Based on Renewable Energy, Journal of the Korean Institute of Gas, 24(5), pp.65-73. https://doi.org/10.7842/KIGAS.2020.24.5.65
  35. Ruokonen, J., Nieminen, H., Dahiru, A. R., et al., 2021 : Modelling and Cost Estimation for Conversion of Green Methanol to Renewable Liquid Transport Fuels via Olefin Oligomerisation, Processes, 9(6), 1046.
  36. Park, S., Kim, J., Yoon, M., et al., 2018 : Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle, Appl. Therm. Eng., 130, pp.611-623. https://doi.org/10.1016/j.applthermaleng.2017.10.145
  37. Towler, G. and Sinnott, R., 2008 : Principles, practice and economics of plant and process design, Chemical Engineering Design, Butterworth-Heinemann
  38. Tsagkari, M., Couturier, J. L., Kokossis, A., et al., 2016 : Early stage capital cost estimation of biorefinery processes: a comparative study of heuristic techniques, ChemSusChem, 9(17), pp.2284-2297. https://doi.org/10.1002/cssc.201600309
  39. KRX, Carbon emission market platform. https://ets.krx.co.kr/contents/ETS/03/03010000/ETS03010000.jsp, December 23, 2021.