DOI QR코드

DOI QR Code

오염토양으로부터 백미로 전이되는 비소함량 예측모델의 정확도 향상 연구

Study on Accuracy Improvement of Predictive Model of Arsenic Transfer from Contaminated Soil to Polished Rice

  • 조승하 (전남대학교 에너지자원공학과) ;
  • 한협조 (전남대학교 에너지자원공학과) ;
  • 이종운 (전남대학교 에너지자원공학과)
  • Jo, Seungha (Department of Energy and Resources Engineering, Chonnamm National University) ;
  • Han, Hyeop-Jo (Department of Energy and Resources Engineering, Chonnamm National University) ;
  • Lee, Jong-Un (Department of Energy and Resources Engineering, Chonnamm National University)
  • 투고 : 2022.08.05
  • 심사 : 2022.08.25
  • 발행 : 2022.08.30

초록

비소 및 중금속으로 오염된 토양 내 함량과 농작물로 전이되는 함량 간의 관련성을 도출하기 위한 연구가 지속적으로 수행되고 있으나 두 함량 간의 낮은 상관성으로 인하여 명확한 결과가 도출되지 못하고 있다. 이 연구에서는 토양 내 비소 전함량과 단일용출 가용성 함량뿐만 아니라 토양의 물리·화학적 특성을 함께 고려하여 백미로 전이되는 비소 함량을 예측하는 통계학적 모델을 만들고자 하였다. 토양 특성 중 pH, 단일용출 가용성 함량, 유기물 함량에 따라 순차적으로 토양을 분류하며 회귀분석을 통한 예측 모델을 도출하였다. 80개의 백미 내 비소 함량과 토양 내 비소 전함량 및 Mehlich 가용성 함량 간의 상관계수는 각각 0.533과 0.493으로 낮았다. 그러나 토양을 pH, Mehlich 가용성 함량에 대한 전함량, 유기물 함량으로 순차적으로 분류하여 모델을 도출한 결과, ① pH가 6.5보다 높은 13개의 토양은 0.963, ② pH가 6.5 이하이고 AsTot/AsMehlich 비가 높은 15개의 토양은 0.849, ③ pH가 6.5 이하이고 AsTot/AsMehlich 비가 낮으며 8.5% 이하의 유기물을 함유한 30개의 토양은 0.935로 예측력이 크게 증가하였다. 이 연구에서 도출된 토양 분류에 따른 백미 전이 함량 예측 모델은 비소 오염 토양에 대해 신뢰성 있는 백미 재배 기준을 설정하는데 의미있는 방법론을 제안할 수 있을 것이다.

Many studies have been conducted to accurately predict the correlations between As and heavy metals content in contaminated soil and cultivated crops; however, due to the low correlation between the two, few clear results were obtained to date. This study aimed to create statistical models that predict the As content transferred from soil to polished rice, considering the physicochemical properties of the soil, as well as the total content and the single-extracted content of As in the soil. Predictive models were derived through regression analysis while sequentially classifying soil samples according to pH, soluble As content by single extraction, and organic matter content of the soil. The correlation coefficients between the As content in 80 polished rice and total As content and Mehlich soluble As content in the soil were low, 0.533 and 0.493, respectively. However, the models derived after sequential classification of the soil by pH, a ratio of total As content to Mehlich soluble As content, and organic matter content greatly increased the predictive power; ① 0.963 for 13 soils with a pH higher than 6.5, ② 0.849 for 15 soils with pH lower than 6.5 and a high ratio of AsTot/AsMehlich, ③ 0.935 for 30 soils with pH lower than 6.5, a high ratio of AsTot/AsMehlich, and organic matter content lower than 8.5%. The suggested prediction model of As transfer from soil to polished rice derived by soil classification may serve as a statistically significant methodology in establishing a rice cultivation standard for arsenic-contaminated soil.

키워드

과제정보

이 연구는 한국연구재단(과제번호 2020R1I1A1A01073355) 및 농촌진흥청(과제번호 PJ015053032022)의 지원을 받아 수행하였습니다.

참고문헌

  1. An, J.-M., Park, D.-H., Hwang, H.-R., Chang S.-Y., Kwon, M.-J., Kim, I.-S., Kim, I.-R., Lee, H.-M., Lim, H.-J., Park, J.-O. and Lee, G.-H. (2018) Risk analysis of arsenic in rice using by HPLP-ICP-MS. Korean J. Environ. Agric., v.37, p.291-301. doi: 10.5338/kjea.2018.37.4.35
  2. ATSDR (2007) Toxicology profile for arsenic. Public Health Service Agency for Toxic Substances and Disease Registry, US DHHS, Atlanta, Georgia.
  3. Boyle, J. (2004) A comparison of two methods for estimating the organic matter content of sediments. J. Paleolimn., v.31, p.125-127. doi: 10.1023/b:jopl.0000013354.67645.df
  4. Busenberg, E. and Clemency, C.V. (1973) Determination of the cation exchange capacity of clays and soils using an ammonia electrode. Clays and Clay Miner., v.21, p.213-217. doi: 10.1346/ccmn.1973.0210403
  5. CAC (2014) Joint FAO/WHO food standards programme. 37th Session Report. Codex Alimentarius Commission.
  6. Chiou, W.-Y. and Hsu, F.-C. (2019) Copper toxicity and prediction models of copper content in leafy vegetables. Sustainability, v.11, p.6215. doi: 10.3390/su11226215
  7. Chojnacka, K., Chojnacki, A., Gorecka, H. and Gorecki, H. (2005) Bioavailability of heavy metals from polluted soils to plants. Sci. Tot. Environ., v.337, p.175-182. doi: 10.1016/j.scitotenv.2004.06.009
  8. Han, H.-J. (2020) A study on the potential mobility assessment of heavy metals in contaminated soil in Korea. Ph.D thesis, Chonnam National University, Korea.
  9. Han, H.-J., Ko, M.-S., Ko, J.I. and Lee, J.-U. (2020) Study on soil extraction methods for contamination assessment of heavy metals in soil. J. Korean Soc. Miner. Energy Resour. Eng., v.57, p.471-482. doi: 10.32390/ksmer.2020.57.5.471
  10. Han, H.-J., Song, C.-W. and Lee, J.-U. (2021) The statistical study on the effects of physicochemical properties of soil on single extraction methods for heavy metals. Econ. Environ. Geol., v.54, p.259-269. doi: 10.9719/eeg.2021.54.2.259
  11. HBBF (2017) Arsenic in 9 brands of infant cereal. Healthy Babies Bright Futures. https://www.healthybabycereals.org/
  12. Huang, R.Q., Gao, S.F., Wang, W.L., Staunton, S. and Wang, G. (2006) Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Sci. Total Environ., v.368, p.531-541. doi: 10.1016/j.scitotenv.2006.03.013
  13. Kim, J.-Y., Lee, J.-H., Kunhikrishnan, A., Kang, D.-W., Kim, M.-J., Yoo, J.-H., Kim, D.-H., Lee, Y.-J. and Kim, W.I. (2012) Transfer factor of heavy metals from agricultural soil to agricultural products. Korean J. Environ. Agric., v.31, p.300-307. doi: 10.5338/kjea.2012.31.4.300
  14. Kim, W.-I., Kim, J.-J., Yoo, J.-H., Kim, J.-Y., Lee, J.-H., Paik, M.-K., Kim, R.-Y. and Im, G.-J. (2010) Arsenic fractionation and bioavailability in paddy soils near closed mines in Korea. Korean J. Soil Sci. Fert., v.43, p.917-922.
  15. Kim, K.-W., Ko, M.-S., Kim, A.-Y., Kim, J., Kim, J.-Y., Lee, B.-T., Lee, J.-S. and Lee, J.-U. (2012) The 2010 Korean soil preservation act: Will stabilization techniques still be feasible? Geochem., J., v.46, p.e17-e19. doi: 10.2343/geochemj.1.0162
  16. Kunhikrishman, A., Go, W.-R., Park, J.-H., Kim, K.-R., Kim, H.-S., Kim, K.-H., Kim, W.-I. and Cho N.-J. (2015) Heavy metal(loid) levels in paddy soils and brown rice in Korea. Korean J. Soil Sci. Fert., v.48, p.515-521. doi: 10.7745/kjssf.2015.48.5.515
  17. Lee, J.-H., Kim, J.-Y., Go, W.-R., Jeong, E.-J., Kunhikrishnan, A., Jung, G.-B., Kim, D.-H. and Kim, W.-I. (2012) Current research trends for heavy metals of agricultural soils and crop uptake in Korea. Korean J. Environ. Agric., v.31, p.75-95. doi: 10.5338/kjea.2012.31.1.75
  18. Lee, S., Kang, D.-W., Kim, H.-S., Yoo, J.-H., Park, S.-W., Oh, K.-S., Cho, I.K. Moon, B.-C. and Kim, W.-I. (2017) Prediction of arsenic uptake by rice in the paddy fields vulnerable to arsenic contamination. Korean J. Soil Sci. Fert., v.50, p.115-126. doi: 10.7745/kjssf.2017.50.2.115
  19. Lim, G.H., Kim, K.H., Seo, B.H. and Kim, K.R. (2014) Transfer function for phytoavailable heavy metals in contaminated agricultural soil. Korean J. Environ. Agric., v.33, p.271-281. doi: 10.5338/kjea.2014.33.4.271
  20. Lund, U. and Fobian, A. (1991) Pollution of two soils by arsenic, chromium and copper, Denmark. Geoderma, v.49, p.83-103. doi: 10.1016/0016-7061(91)90093-9
  21. Mehlich, A. (1984) Mehlich No. 3 soil test extractant: A modification of Mehlich No. 2 extractant. Comm. Soil Sci. Plant Anal., v.15, p.1409-1416. doi: 10.1080/00103628409367568
  22. MFDS (2016) White paper. Ministry of Food and Drug Safety. ISBN 9791170098164
  23. MFDS (2021) Food standards and specifications. Ministry of Food and Drug Safety, v.79, 1056p.
  24. MOE (2016) Report on soil measurement network and soil contamination actual condition in 2015. Ministry of Environment. 11-1480000-000669-10
  25. MOE (2017) Environment white paper. Ministry of Environment. 11-1480000-000586-10
  26. Queensland Government (2016) Soil pH. Queensland Department of Environment and Heritage Protection. https://www.qld.gov.au.
  27. Seo, B.-H., Lim, G.-H., Kim, K.-H., Kim, J.-E., Hur, J.-H., Kim, W.-I. and Kim, K.-R. (2013) Comparison of single extractions from evaluation of heavy metals phytoavailability in soil. Korean J. Environ. Agric., v.32, p.171-178. doi: 10.5338/kjea.2013.32.3.171
  28. Song, C.-W., Han, H.-J. and Lee, J.-U. (2019) Investigation on heavy metal distribution in soils around Boryeong coal-fired power plant. J. Korean Soc. Miner. Energy Resour. Eng., v.56, p.10-22. doi: 10.32390/ksmer.2019.56.1.010
  29. Ure, A.M. (1996) Single extraction schemes for soil analysis and related applications. Sci. Tot. Environ., v.178, p.3-10. doi: 10.1016/0048-9697(95)04791-3
  30. USDA (1993) Examination and description of soil profiles. U.S. Department of Agriculture Handbook. https://www.nrcs.usda.gov.
  31. Xie, M., Li, H., Zhu, Y., Xue, J., You, Q., Jin, B. and Shi, Z. (2021) Predicting bioaccumulation of potentially toxic element in soil-rice systems using multi-source data and machine learning methods: a case study of an industrial city in southeast China. Land. v.10, p.558-574. doi: 10.3390/land10060558
  32. Yang, S.-H., Park, J.-S., Cho, M.-J. and Choi, H. (2016) Risk analysis of inorganic arsenic in foods. J. Food Hyg. Saf., v.31, p.227-249. doi: 10.13103/jfhs.2016.31.4.227
  33. Yao, B.-M., Chen, P., Zhang, H.-M. and Sun, G.-X. (2021) A predictive model for arsenic accumulation in rice grains based on bioavailable arsenic and soil characteristics. J. Hazard. Mater. v.412, p.125-131. doi: 10.1016/j.jhazmat.2021.125131