DOI QR코드

DOI QR Code

Bispecific Antibody-Bound T Cells as a Novel Anticancer Immunotherapy

  • Cho, Jaewon (Department of Pharmacy, Kangwon National University) ;
  • Tae, Nara (Kangwon Institute of Inclusive Technology, Kangwon National University) ;
  • Ahn, Jae-Hee (Department of Pharmacy, Kangwon National University) ;
  • Chang, Sun-Young (College of Pharmacy, Ajou University) ;
  • Ko, Hyun-Jeong (Department of Pharmacy, Kangwon National University) ;
  • Kim, Dae Hee (Department of Pharmacy, Kangwon National University)
  • Received : 2022.01.27
  • Accepted : 2022.04.13
  • Published : 2022.09.01

Abstract

Chimeric antigen receptor T (CAR-T) cell therapy is one of the promising anticancer treatments. It shows a high overall response rate with complete response to blood cancer. However, there is a limitation to solid tumor treatment. Additionally, this currently approved therapy exhibits side effects such as cytokine release syndrome and neurotoxicity. Alternatively, bispecific antibody is an innovative therapeutic tool that simultaneously engages specific immune cells to disease-related target cells. Since programmed death ligand 1 (PD-L1) is an immune checkpoint molecule highly expressed in some cancer cells, in the current study, we generated αCD3xαPD-L1 bispecific antibody (BiTE) which can engage T cells to PD-L1+ cancer cells. We observed that the BiTE-bound OT-1 T cells effectively killed cancer cells in vitro and in vivo. They substantially increased the recruitment of effector memory CD8+ T cells having CD8+CD44+CD62Llow phenotype in tumor. Interestingly, we also observed that BiTE-bound polyclonal T cells showed highly efficacious tumor killing activity in vivo in comparison with the direct intravenous treatment of bispecific antibody, suggesting that PD-L1-directed migration and engagement of activated T cells might increase cancer cell killing. Additionally, BiTE-bound CAR-T cells which targets human Her-2/neu exhibited enhanced killing effect on Her-2-expressing cancer cells in vivo, suggesting that this could be a novel therapeutic regimen. Collectively, our results suggested that engaging activated T cells with cancer cells using αCD3xαPD-L1 BiTE could be an innovative next generation anticancer therapy which exerts simultaneous inhibitory functions on PD-L1 as well as increasing the infiltration of activated T cells having effector memory phenotype in tumor site.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2020R1A5A8019180). This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT, and Future Planning (NRF-2017M3A9C8060390).

References

  1. Ahn, J. H., Lee, B. H., Kim, S. E., Kwon, B. E., Jeong, H., Choi, J. R., Kim, M. J., Park, Y., Kim, B. S., Kim, D. H. and Ko, H. J. (2021) A novel anti-PD-L1 antibody exhibits antitumor effects on multiple myeloma in murine models via antibody-dependent cellular cytotoxicity. Biomol. Ther. (Seoul) 29, 166-174. https://doi.org/10.4062/biomolther.2020.131
  2. Alegre, M. L., Tso, J. Y., Sattar, H. A., Smith, J., Desalle, F., Cole, M. and Bluestone, J. A. (1995) An anti-murine CD3 monoclonal anti-body with a low affinity for Fc gamma receptors suppresses transplantation responses while minimizing acute toxicity and immunogenicity. J. Immunol. 155, 1544-1555. https://doi.org/10.4049/jimmunol.155.3.1544
  3. Baird, J. H., Frank, M. J., Craig, J., Patel, S., Spiegel, J. Y., Sahaf, B., Oak, J. S., Younes, S. F., Ozawa, M. G., Yang, E., Natkunam, Y., Tamaresis, J., Ehlinger, Z., Reynolds, W. D., Arai, S., Johnston, L., Lowsky, R., Meyer, E., Negrin, R. S., Rezvani, A. R., Shiraz, P., Sidana, S., Weng, W. K., Davis, K. L., Ramakrishna, S., Schultz, L., Mullins, C., Jacob, A., Kirsch, I., Feldman, S. A., Mackall, C. L., Miklos, D. B. and Muffly, L. (2021) CD22-directed CAR T-cell therapy induces complete remissions in CD19-directed CAR-refractory large B-cell lymphoma. Blood 137, 2321-2325.
  4. Choi, J. R., Kim, M. J., Tae, N., Wi, T. M., Kim, S. H., Lee, E. S. and Kim, D. H. (2020) BLI-based functional assay in phage display benefits the development of a PD-L1-targeting therapeutic antibody. Viruses 12, 684.
  5. Chung, Y., Kim, B. S., Kim, Y. J., Ko, H. J., Ko, S. Y., Kim, D. H. and Kang, C. Y. (2006) CD1d-restricted T cells license B cells to generate long-lasting cytotoxic antitumor immunity in vivo. Cancer Res. 66, 6843-6850. https://doi.org/10.1158/0008-5472.CAN-06-0889
  6. Edeline, J., Houot, R., Marabelle, A. and Alcantara, M. (2021) CAR-T cells and BiTEs in solid tumors: challenges and perspectives. J. Hematol. Oncol. 14, 65.
  7. Franquiz, M. J. and Short, N. J. (2020) Blinatumomab for the treatment of adult B-cell acute lymphoblastic leukemia: toward a new era of targeted immunotherapy. Biol. Targets Ther. 14, 23-34. https://doi.org/10.2147/BTT.S202746
  8. Geuijen, C., Tacken, P., Wang, L. C., Klooster, R., van Loo, P. F., Zhou, J., Mondal, A., Liu, Y. B., Kramer, A., Condamine, T., Volgina, A., Hendriks, L. J. A., van der Maaden, H., Rovers, E., Engels, S., Fransen, F., den Blanken-Smit, R., Zondag-van der Zande, V., Basmeleh, A., Bartelink, W., Kulkarni, A., Marissen, W., Huang, C. Y., Hall, L., Harvey, S., Kim, S., Martinez, M., O'Brien, S., Moon, E., Albelda, S., Kanellopoulou, C., Stewart, S., Nastri, H., Bakker, A. B. H., Scherle, P., Logtenberg, T., Hollis, G., de Kruif, J., Huber, R., Mayes, P. A. and Throsby, M. (2021) A human CD137×PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade. Nat. Commun. 12, 4445.
  9. Horn, L. A., Ciavattone, N. G., Atkinson, R., Woldergerima, N., Wolf, J., Clements, V. K., Sinha, P., Poudel, M. and Ostrand-Rosenberg, S. (2017) CD3xPDL1 bi-specific T cell engager (BiTE) simultaneously activates T cells and NKT cells, kills PDL1(+) tumor cells, and extends the survival of tumor-bearing humanized mice. Oncotarget 8, 57964-57980. https://doi.org/10.18632/oncotarget.19865
  10. Jeong, S., Park, E., Kim, H. D., Sung, E., Kim, H., Jeon, J., Kim, Y., Jung, U. J., Son, Y. G., Hong, Y., Lee, H., Lee, S., Lim, Y., Won, J., Jeon, M., Hwang, S., Fang, L., Jiang, W., Wang, Z., Shin, E. C., Park, S. H. and Jung, J. (2021) Novel anti-4-1BB×PD-L1 bispecific antibody augments anti-tumor immunity through tumor-directed T-cell activation and checkpoint blockade. J. Immunother. Cancer 9, e002428.
  11. Jiang, H., Ni, H., Zhang, P., Guo, X., Wu, M., Shen, H., Wang, J., Wu, W., Wu, Z., Ding, J., Tang, R., Zhou, S., Chen, B., Yu, M., Jing, H. and Liu, J. (2021) PD-L1/LAG-3 bispecific antibody enhances tumor-specific immunity. Oncoimmunology 10, 1943180.
  12. Kershaw, M. H., Westwood, J. A. and Darcy, P. K. (2013) Gene-engineered T cells for cancer therapy. Nat. Rev. Cancer 13, 525-541. https://doi.org/10.1038/nrc3565
  13. Kershaw, M. H., Westwood, J. A., Parker, L. L., Wang, G., Eshhar, Z., Mavroukakis, S. A., White, D. E., Wunderlich, J. R., Canevari, S., Rogers-Freezer, L., Chen, C. C., Yang, J. C., Rosenberg, S. A. and Hwu, P. (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106-6115. https://doi.org/10.1158/1078-0432.CCR-06-1183
  14. Ko, H. J., Kim, Y. J., Kim, Y. S., Chang, W. S., Ko, S. Y., Chang, S. Y., Sakaguchi, S. and Kang, C. Y. (2007) A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res. 67, 7477-7486. https://doi.org/10.1158/0008-5472.CAN-06-4639
  15. Li, Y. and Kurlander, R. J. (2010) Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: differing impact on CD8 T cell phenotype and responsiveness to restimulation. J. Transl. Med. 8, 104.
  16. Liu, Q., Sun, Z. and Chen, L. (2020) Memory T cells: strategies for optimizing tumor immunotherapy. Protein Cell 11, 549-564. https://doi.org/10.1007/s13238-020-00707-9
  17. Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., Bader, P., Verneris, M. R., Stefanski, H. E., Myers, G. D., Qayed, M., De Moerloose, B., Hiramatsu, H., Schlis, K., Davis, K. L., Martin, P. L., Nemecek, E. R., Yanik, G. A., Peters, C., Baruchel, A., Boissel, N., Mechinaud, F., Balduzzi, A., Krueger, J., June, C. H., Levine, B. L., Wood, P., Taran, T., Leung, M., Mueller, K. T., Zhang, Y., Sen, K., Lebwohl, D., Pulsipher, M. A. and Grupp, S. A. (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439-448.
  18. Moon, E. K., Carpenito, C., Sun, J., Wang, L. C., Kapoor, V., Predina, J., Powell, D. J., Jr., Riley, J. L., June, C. H. and Albelda, S. M. (2011) Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 17, 4719-4730. https://doi.org/10.1158/1078-0432.CCR-11-0351
  19. Moon, E. K., Wang, L. C., Dolfi, D. V., Wilson, C. B., Ranganathan, R., Sun, J., Kapoor, V., Scholler, J., Pure, E., Milone, M. C., June, C. H., Riley, J. L., Wherry, E. J. and Albelda, S. M. (2014) Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin. Cancer Res. 20, 4262-4273. https://doi.org/10.1158/1078-0432.CCR-13-2627
  20. Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J., Miklos, D. B., Jacobson, C. A., Braunschweig, I., Oluwole, O. O., Siddiqi, T., Lin, Y., Timmerman, J. M., Stiff, P. J., Friedberg, J. W., Flinn, I. W., Goy, A., Hill, B. T., Smith, M. R., Deol, A., Farooq, U., McSweeney, P., Munoz, J., Avivi, I., Castro, J. E., Westin, J. R., Chavez, J. C., Ghobadi, A., Komanduri, K. V., Levy, R., Jacobsen, E. D., Witzig, T. E., Reagan, P., Bot, A., Rossi, J., Navale, L., Jiang, Y., Aycock, J., Elias, M., Chang, D., Wiezorek, J. and Go, W. Y. (2017) Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531-2544.
  21. Newick, K., O'Brien, S., Moon, E. and Albelda, S. M. (2017) CAR T cell therapy for solid tumors. Annu. Rev. Med. 68, 139-152. https://doi.org/10.1146/annurev-med-062315-120245
  22. Principe, N., Kidman, J., Goh, S., Tilsed, C. M., Fisher, S. A., Fear, V. S., Forbes, C. A., Zemek, R. M., Chopra, A., Watson, M., Dick, I. M., Boon, L., Holt, R. A., Lake, R. A., Nowak, A. K., Lesterhuis, W. J., McDonnell, A. M. and Chee, J. (2020) Tumor infiltrating effector memory antigen-specific CD8(+) T cells predict response to immune checkpoint therapy. Front. Immunol. 11, 584423.
  23. Qin, S., Xu, L., Yi, M., Yu, S., Wu, K. and Luo, S. (2019) Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol. Cancer 18, 155.
  24. Teoh, P. J. and Chng, W. J. (2021) CAR T-cell therapy in multiple myeloma: more room for improvement. Blood Cancer J. 11, 84.
  25. Till, B. G., Jensen, M. C., Wang, J., Qian, X., Gopal, A. K., Maloney, D. G., Lindgren, C. G., Lin, Y., Pagel, J. M., Budde, L. E., Raubitschek, A., Forman, S. J., Greenberg, P. D., Riddell, S. R. and Press, O. W. (2012) CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119, 3940-3950. https://doi.org/10.1182/blood-2011-10-387969
  26. Turtle, C. J., Hay, K. A., Hanafi, L. A., Li, D., Cherian, S., Chen, X., Wood, B., Lozanski, A., Byrd, J. C., Heimfeld, S., Riddell, S. R. and Maloney, D. G. (2017) Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J. Clin. Oncol. 35, 3010-3020. https://doi.org/10.1200/JCO.2017.72.8519
  27. Waldman, A. D., Fritz, J. M. and Lenardo, M. J. (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651-668. https://doi.org/10.1038/s41577-020-0306-5
  28. You, G., Won, J., Lee, Y., Moon, D., Park, Y., Lee, S. H. and Lee, S. W. (2021) Bispecific antibodies: a smart arsenal for cancer immunotherapies. Vaccines 9, 724.
  29. Yu, W. L. and Hua, Z. C. (2019) Chimeric antigen receptor T-cell (CAR T) therapy for hematologic and solid malignancies: efficacy and safety-a systematic review with meta-analysis. Cancers (Basel) 11, 47.
  30. Zhang, C., Liu, J., Zhong, J. F. and Zhang, X. (2017) Engineering CAR-T cells. Biomarker Res. 5, 22.
  31. Zheng, P. P., Kros, J. M. and Li, J. (2018) Approved CAR T cell therapies: ice bucket challenges on glaring safety risks and long-term impacts. Drug Discov. Today 23, 1175-1182. https://doi.org/10.1016/j.drudis.2018.02.012