References
- Abdelbaki, B., Sayed-Ahmed, M. and Al-Kaisy, A. (2021), "Axisymmetric bending of FGM circular plate with parabolically-varying thickness resting on a non-uniform two-parameter partial foundation by DQM", Adv. Dyn. Syst. Appl., 16(2), 1393-1413.
- Abdelbaki, B.M. and Ahmed, M. (2022), "Variation ofsoilsubgrade modulus under circular foundation", J. Al-Azhar Univ. Eng. Sector, 17(63), 549-556. https://doi.org/10.21608/auej.2022.233759
- Al Kaisy, A., Esmaeel, R.A. and Nassar, M.M. (2007), "Application of the differential quadrature method to the longitudinal vibration of non-uniform rods", Eng. Mech., 14(5), 303-310.
- Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007.
- Bert, C., Jang, S. and Striz, A. (1987), "New methods for analyzing vibration of structural components", Structures, Structural Dynamics and Materials Conference, Monterey, CA, April.
- Bert, C.W., Jang, S.K. and Striz, A.G. (1988), "Two new approximate methods for analyzing free vibration of structural components", AIAA J., 26(5), 612-618. https://doi.org/10.2514/3.9941.
- Birman, V. (2011), Plate Structures, Springer Science & Business Media.
- Civalek, O. and Ersoy, H. (2009), "Free vibration and bending analysis of circular Mindlin plates using singular convolution method", Commun. Numer. Meth. Eng., 25(8), 907-922. https://doi.org/10.1002/cnm.1138.
- Farhatnia, F., Babaei, J. and Foroudastan, R. (2018), "Thermo-Mechanical nonlinear bending analysis of functionally graded thick circular plates resting on Winkler foundation based on sinusoidal shear deformation theory", Arab. J. Sci. Eng., 43(3), 1137-1151. https://doi.org/10.1007/s13369-017-2753-2.
- Farhatnia, F., Saadat, R. and Oveissi, S. (2019), "Functionally graded sandwich circular plate of non-uniform varying thickness with homogenous core resting on elastic foundation: Investigation on bending via differential quadrature method", Am. J. Mech. Eng., 7(2), 68-78. https://doi.org/10.12691/ajme-7-2-3
- Gupta, U., Ansari, A. and Sharma, S. (2006), "Buckling and vibration of polar orthotropic circular plate resting on Winkler foundation", J. Sound Vib., 297(3-5), 457-476. https://doi.org/10.1016/j.jsv.2006.01.073.
- Gupta, U., Lal, R. and Sharma, S. (2006), "Vibration analysis of non-homogeneous circular plate of nonlinear thickness variation by differential quadrature method", J. Sound Vib., 298(4-5), 892-906. https://doi.org/10.1016/j.jsv.2006.05.030.
- Hamzehkolaei, S., Malekzadeh, P. and Vaseghi, J. (2011), "Thermal effect on axisymmetric bending of functionally graded circular and annular plates using DQM", Steel Compos. Struct., 11(4), 341-358. https://doi.org/10.12989/scs.2011.11.4.341.
- Hosseini-Hashemi, S., Akhavan, H., Taher, H.R.D., Daemi, N. and Alibeigloo, A. (2010), "Differential quadrature analysis of functionally graded circular and annular sector plates on elastic foundation", Mater. Des., 31(4), 1871-1880. https://doi.org/10.1016/j.matdes.2009.10.060.
- Leissa, A.W. (1969), Vibration of Plates, Vol. 160, Scientific and Technical Information Division, National Aeronautics and Space Administration.
- Liew, K., Han, J.B. and Xiao, Z. (1997), "Vibration analysis of circular Mindlin plates using the differential quadrature method", J. Sound Vib., 205(5), 617-630. https://doi.org/10.1006/jsvi.1997.1035.
- Ma, L. and Wang, T. (2004), "Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory", Int. J. Solid. Struct., 41(1), 85-101. https://doi.org/10.1016/j.ijsolstr.2003.09.008.
- Nie, G. and Zhong, Z. (2007), "Axisymmetric bending of two-directional functionally graded circular and annular plates", Acta Mechanica Solida Sinica, 20(4), 289-295. https://doi.org/10.1007/s10338-007-0734-9.
- Prakash, T. and Ganapathi, M. (2006), "Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method", Compos. Part B: Eng., 37(7-8), 642-649. https://doi.org/10.1016/j.compositesb.2006.03.005.
- Rad, A.B. and Shariyat, M. (2013), "A three-dimensional elasticity solution for two-directional FGM annular plates with non-uniform elastic foundations subjected to normal and shear tractions", Acta Mechanica Solida Sinica, 26(6), 671-690. https://doi.org/10.1016/S0894-9166(14)60010-0.
- Reddy, J., Wang, C. and Kitipornchai, S. (1999), "Axisymmetric bending of functionally graded circular and annular plates", Eur. J. Mech.-A/Solid., 18(2), 185-199. https://doi.org/10.1016/S0997-7538(99)80011-4.
- Senjanovic, I., Hadzic, N., Vladimir, N. and Cho, D.S. (2014), "Natural vibrations of thick circular plate based on the modified Mindlin theory", Arch. Mech., 66(6), 389-409.
- Shariyat, M. and Alipour, M. (2010), "A differential transform approach for modal analysis of variable thickness two-directional FGM circular plates on elastic foundations", Iran. J. Mech. Eng., 11(2), 15-38.
- Shariyat, M. and Alipour, M. (2011), "Differential transform vibration and modal stress analyses of circular plates made of two-directional functionally graded materials resting on elastic foundations", Arch. Appl. Mech., 81(9), 1289-1306. https://doi.org/10.1007/s00419-010-0484-x.
- Sharma, S., Srivastava, S.and Lal, R. (2011), "Free vibration analysis of circular plate of variable thickness resting on Pasternak foundation", J. Int. Acad. Phys. Sci., 15, 1-13.
- Shen, H.S. (2016), Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press.
- Shu, C. (2000), Application of Differential Quadrature Method to Structural and Vibration Analysis, Differential Quadrature and Its Application in Engineering, Springer.
- Wu, T., Wang, Y. and Liu, G. (2002), "Free vibration analysis of circular plates using generalized differential quadrature rule", Comput. Meth. Appl. Mech. Eng., 191(46), 5365-5380. https://doi.org/10.1016/S0045-7825(02)00463-2.
- Yamanouchi, M., Koizumi, M., Hirai, T. and Shiota, I. (1990), "Proceedings of the first international symposium on functionally gradient materials", Sendai, Japan.
- Zheng, L. and Zhong, Z. (2009), "Exact solution for axisymmetric bending of functionally graded circular plate", Tsinghua Sci. Technol., 14, 64-68. https://doi.org/10.1016/S1007-0214(10)70033-X.
- Zhou, D., Lo, S., Au, F. and Cheung, Y. (2006), "Three-dimensional free vibration of thick circular plates on Pasternak foundation", J. Sound Vib., 292(3-5), 726-741. https://doi.org/10.1016/j.jsv.2005.08.028.