DOI QR코드

DOI QR Code

Time harmonic interactions due to inclined load in an orthotropic thermoelastic rotating media with fractional order heat transfer and two-temperature

  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University Patiala) ;
  • Himanshi, Himanshi (Department of Basic and Applied Sciences, Punjabi University Patiala)
  • 투고 : 2021.09.25
  • 심사 : 2022.02.02
  • 발행 : 2022.08.25

초록

The objective of this paper is to study the effect of frequency in a two-dimensional orthotropic thermoelastic rotating solid with fractional order heat transfer in generalized thermoelasticity with two-temperature due to inclined load. As an application the bounding surface is subjected to uniformly and linearly distributed loads (mechanical and thermal source). The problem is solved with the help of Fourier transform. Assuming the disturbances to be harmonically time dependent, the expressions for displacement components, stress components, conductive temperature and temperature change are derived in frequency domain. Numerical inversion technique has been used to determine the results in physical domain. The results are depicted graphically to show the effect of frequency on various components. Some particular cases are also discussed in the present research.

키워드

참고문헌

  1. Abbas, I.A. (2011), "A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation", Sadhana, 36(3), 411-423. http://doi.org/10.1007/s12046-011-0025-5.
  2. Abbas, I.A. (2018), "A study on fractional order theory in thermoelastic half-space under thermal loading", Phys. Mesomech., 21(2), 150-156. http://doi.org/10.1134/S102995991802008X.
  3. Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11(1), 185-190. http://doi.org/10.1166/jctn.2014.3335.
  4. Abbas, I.A., EL-Amin, M.F. and Salama A. (2009), "Effect of thermal dispersion on free convection in a fluid saturated porous medium", Int. J. Heat Fluid Flow, 30(2), 229-236. http://doi.org/10.1016/j.ijheatfluidflow.2009.01.004.
  5. Abbas, I.A., Saeed, T. and Alhothuali, M. (2021), "Hyperbolic two-temperature photo-thermal interaction in a semiconductor medium with a cylindrical cavity", Silicon, 13(2), 1871-1878. http://doi.org/10.1007/s-12633-020-00570-7.
  6. Abd-Alla, A.E.N.N., Alshaikh, F., Del Vescovo, D. and Spagnuolo, M. (2015), "Plane waves and eigen frequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity", J. Therm. Stress., 40(9), 1079-1092. https://doi.org/10.1080/01495739.2017.1334528.
  7. Abd-Alla, A.M., Abo-Dahab, S.M. and Al-Thamali, T.A. (2012), "Propagation of Rayleigh waves in a rotating orthotropic material elastic half-space under initial stress and gravity", J. Mech. Sci. Technol., 26(9), 2815-2823. https://doi.org/10.1007/s12206-012-0736-5.
  8. Abo-Dahab, S.M. and Abbas, I.A. (2011), "LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", Appl. Math. Model., 35(8), 3759-3768. http://doi.org/10.1016/j.apm.2011.02.028.
  9. Abo-Dahab, S.M., Jahangir, A. and Abd-Alla, A.E.N.N. (2018), "Reflection of plane waves in thermoelastic microstructured materials under the influence of gravitation", Continuum Mech. Thermodyn., 32(4), 1-13. https://doi.org/10.1007/s00161-018-0739-2.
  10. Ailawalia, P. and Narah, N.S. (2009), "Effect of rotation in generalized thermoelastic solid under the influence of gravity with an overlying infinite thermoelastic fluid", Appl. Math. Mech., 30(12), 1505-1518. https://doi.org/10.1007/s10483-009-1203-6.
  11. Ailawalia, P., Kumar, S. and Pathania, D. (2010), "Effect of rotation in a generalized thermoelastic medium with two temperature under hydrostatic initial stress and gravity", Multidisc. Model. Mater. Struct., 6(2), 185-205. https://doi.org/10.1108/15736101011067984.
  12. Akbas, S.D. (2020), "Dynamic analysis of a laminated composite beam under harmonic load", Couple. Syst. Mech., 9(6), 563-573. http://doi.org/10.12989/csm.2020.9.6.563.
  13. Alzahrani, F.S. and Abbas, I.A. (2020), "Photo-thermal interactions in a semiconducting media with a spherical cavity under hyperbolic two-temperature model", Math., 8(585), 1-11. http://doi.org/10.3390/math8040585.
  14. Biswas, S. (2020), "Surface waves in porous nonlocal thermoelastic orthotropic medium", Acta Mechanica, 231(7), 2741-2760. https://doi.org/10.1007/s00707-020-02670-2.
  15. Biswas, S. and Abo-Dahab, S.M. (2020), "Three dimensional thermal shock problem in magneto-thermoelastic orthotropic medium", J. Solid Mech., 12(3), 663-680.
  16. Caputo, M. (1967), "Linear model of dissipation whose Q is always frequency independent-II", Geophys. J. Roy. Astronom. Soc., 13, 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
  17. Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 19(4), 614-627. https://doi.org/10.1007/BF01594969
  18. Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968), "A note on non-simple heat conduction", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 19(4), 969-970. https://doi.org/10.1007/BF01602278
  19. Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), "On the thermodynamics of non-simple elastic materials with two temperatures", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 20(1), 107-112. https://doi.org/10.1007/BF01591120
  20. EL Naggar, A.M., Kishka, Z., Abd-Alla, A.M., Abbas, I.A., Abo-Dahab, S.M. and Elsagheer, M. (2013), "On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized thermoelasticity", J. Comput. Theor. Nanosci., 10(6), 1408-1417. http://doi.org/10.1166/jctn.2013.2862.
  21. Ezzat, M.A. and AI-Bary, A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electromagnet. Mech., 50(4), 549-567. http://doi.org/10.3233/JAE-150131.
  22. Ezzat, M.A. and EL-Bary, A.A. (2017a), "Fractional magneto-thermoelastic materials with phase lag Green-Naghdi theories", Steel Compos. Struct., 24(3), 297-307. https://doi.org/10.12989/scs.2017.24.3.297.
  23. Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017b), "Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol., 24(2), 951-961. https://doi.org/10.1007/s00542-017-3425-6.
  24. Kaur, I. and Lata, P. (2019), "Effect of inclined load on transversely isotropic magneto-thermoelastic rotating solid with time harmonic source", Adv. Mater. Res., 8(2), 83-102. http://doi.org/10.12989/amr.2019.8.2.083.
  25. Khamis, A.K., Abdel Allah Nasr, A.M., EL-Bary, A.A. and Atef, H.M. (2021), "Effect of modified ohm's and Fourier's laws on magneto thermo-viscoelastic waves with Green-Naghdi theory in a homogeneous isotropic hollow cylinder", Int. J. Adv. Appl. Sci., 8(6), 40-47. http://doi.org/10.1833/ijaas.2021.06.005.
  26. Kumar, R. and Chawla, V. (2014), "General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids", Theor. Appl. Mech., 41(4), 247-265. http://doi.org/10.2298/TAM1404247.
  27. Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017), "Rayleigh waves in anisotropic magneto thermoelastic medium", Couple. Syst. Mech., 6(3), 317-333. http://doi.org/10.12989/csm.2017.6.3.317.
  28. Lata, P. (2019), "Time harmonic interactions in fractional thermoelastic diffusive thick circular plate", Couple. Syst. Mech., 8(1), 39-53. http://doi.org/10.12989/csm.2019.8.1.039.
  29. Lata, P. and Himanshi. (2021a), "Orthotropic magneto-thermoelastic solid with multi-dual-phase-lag model and hall current", Couple. Syst. Mech., 10(2), 103-121. http://doi.org/10.12989/csm.2021.10.2.103.
  30. Lata, P. and Himanshi. (2021b), "Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain", Struct. Eng. Mech., 77(3), 315-327. http://doi.org/10.12289/sem.2021.77.3.315.
  31. Lata, P. and Himanshi. (2021c), "Stoneley wave propagation in an orthotropic thermoelastic media with fractional order theory", Compos. Mater. Eng., 3(1), 57-70. http://doi.org/10.12989/cme.2021.3.1.057.
  32. Lata, P. and Zakhmi, H. (2019), "Fractional order generalized thermoelastic study in orthotropic medium of type GN-III", Geomech. Eng., 19(4), 295-305. http://doi.org/10.12989/gae.2019.19.4.295.
  33. Lata, P. and Zakhmi, H. (2020), Time harmonic interactions in an orthotropic media in the context of fractional order theory of thermoelasticity", Struct. Eng. Mech., 73(6), 725-735. http://doi.org/10.12289/sem.2020.73.6.725.
  34. Mahmoud, S.R., Marin, M. and Basyouni, A.L. (2015), "Effect of initial stress and rotation on free vibrations in transversely isotropic human long dry bone", Analele Universitatii "Ovidius" Constanta-Seria Mathematica, 23(1), 171-184. http://doi.org/10.1515/auom-2015-0011.
  35. Marin, M. and Stan, G. (2013), "Weak solutions in elasticity of dipolar bodies with stretch", Carpath. J. Math., 29(1), 33-40. https://doi.org/10.37193/CJM.2013.01.12
  36. Marin, M., Othman, M.I.A. and Abbas, I.A. (2015), "An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids", J. Comput. Theor. Nanosci., 12(8), 1594-1598. http://doi.org/10/1166/jctn.2015.3934. 10/1166/jctn.2015.3934
  37. Marin, M., Othman, M.I.A., Seadawy, A.R. and Carstea, C. (2020), "A domain of influence in the Moore-Gibson-Thompson theory of dipolar bodies", J. Taibah Univ. Sci., 14(1), 653-660. http://doi.org/10.1080/16583655.2020.176366.
  38. Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", AIP Adv., 5(3), 037113. http://doi.org/10.1063/1.4914912.
  39. Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Integrals and Derivatives: Theory and Applications, Willey.
  40. Othman, M.I.A., Khan, A., Jahangir, R. and Jahangir, A. (2019), "Analysis on plane waves through magneto-thermoelastic microstretch rotating medium with temperature dependent elastic properties", Appl. Math. Model., 65, 535-548. http://doi.org/10.1016/j.apm.2018.08.032.
  41. Press, W.H., Teukolshy, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipes in Fortran, Cambridge University Press, Cambridge, New York, NY, USA.
  42. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1986), Numerical Recipes in Fortran 77, Cambridge University Press, Cambridge, New York, NY, USA.
  43. Saeed, T., Abbas, I.A. and Marin, M. (2020), "A gl model on thermo-elastic interactions in a poroelastic material using finite element method", Symmetry, 12(3), 488. http://doi.org/10.3390/sym12030488.
  44. Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117.
  45. Sharma, N., Kumar, R. and Ram, P. (2008), "Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain", Struct. Eng. Mech., 28(1), 19-38 http://doi.org/10.12989/sem.2008.28.1.019.
  46. Singh, B. and Aarti, A. (2021), "Reflection of plane waves from the boundary of a thermo-magneto-electroelastic solid half space", Couple. Syst. Mech., 10(2), 143-159. http://doi.org/10.12989/csm.2021.10.2.143.
  47. Youssef, H.M. (2006), "Theory of two temperature generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. http://doi.org/10.1093/imamat/hxh101.
  48. Zakaria, M. (2012), "Effects of hall current and rotation on magneto-micropolar generalized thermoelasticity due to ramp-type heating", Int. J. Electromagnet. Appl., 2(3), 24-32. http://doi.org/10.5923/j.ijea.20120203.02
  49. Zenkour, A.M. (2020), "Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model", J. Phys. Chem. Solid., 137, 109213. https://doi.org/10.1016/j.jpcs.2019.109213.