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EINSTEIN WARPED PRODUCT MANIFOLDS WITH 3−
DIMENSIONAL FIBER MANIFOLDS

Yoon-Tae Jung

Abstract. In this paper, we consider the existence of nonconstant
warping functions on a warped product manifold M = B ×f2 F ,
where B is a q(> 2)−dimensional base manifold with a nonconstant
scalar curvature SB(x) and F is a 3− dimensional fiber Einstein
manifold and discuss that the resulting warped product manifold
is an Einstein manifold, using the existence of the solution of some
partial differential equation.

1. Introduction

In [2], A.L. Besse studied a new compact Einstein manifold using
the warped product. Then A.L. Besse asked the following: “Does there
exist an Einstein warped product manifold with a nonconstant warping
function?”

In [9],[10], and [11], the authors proved that there does not exist a
compact Einstein warped product space with a nonconstant warping
function, if the scalar curvature on M is nonpositive or the base is a
compact 2−dimensional manifold. Hence here we assume that the base
manifold B is a compact q(> 2)− dimensional manifold with the positive
scalar curvature somewhere.

Definition 1.1. Let (B, gB) and (F, gF ) be two manifolds. Let gB
be a metric tensor of B and gF be a metric tensor of F. We denote by π
and σ the projections of B×F onto B and F, respectively. For a positive
smooth function f on B the warped product manifold M = B ×f2 F is
the product manifold M = B × F furnished with the metric tensor g
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defined by g = π∗(gB) + (f ◦ π)2σ∗(gF ). We denote by π∗ and σ∗ the
pullback π and σ, respectively. Here B is called the base of M and F
the fiber([1,3,4,5,12]).

Now we recall the formula for the Ricci curvature tensor Ric of the
warped product manifold M = B×f2 F. We write RicB for the pullback

by π of the Ricci curvature of B and similarly for RicF .

Proposition 1.2. On a warped product manifoldM = B×f2F with
p = dimF > 1, let X,Y be horizontal and V,W vertical. Then

(i) Ric(X,Y ) = RicB(X,Y )− p

f
Hf (X,Y ),

(ii) Ric(X,V ) = 0,

(iii) Ric(V,W ) = RicF (V,W )− g(V,W )(
∆f

f
+ (p− 1)

g(df, df)

f2
),

where Hf and ∆f denote by the Hessian of f and the Laplacian of f
for gB.

Proof. See Proposition 9.106 in ([2, p.266]).

Corollary 1.3. Let F be a 3 - dimensional manifold. The warped
product M = B ×f2 F is an Einstein manifold (with Ric = λg) if and
only if gF , gB and f satisfy
(i) (F, gF ) is Einstein (with RicF = λ0gF ),

(ii)
∆f

f
− 2

∥df∥2

f2
+
λ0
f2

= λ,

(iii) RicB − 3

f
Hf = λgB.

Proof. See Corollary 9.107 in [2, p.267]

Obviously, (i) gives a condition on (F, gF ) alone, whereas (ii) and (iii)
are two differential equations for f on (B, gB).

In this paper, we consider the following question:

Question A : If the base manifold B is a compact q(> 2)− dimensional
manifold and the fiber manifold F is a 3 - dimensional Einstein manifold
with RicF = λ0gF , then do there exist a constant λ and a nonconstant
warping function f such that the resulting warped product manifold
M = B ×f2 F is an Einstein manifold with Ric = λg ?

In [6], the author proved that if B is a compact q(> 2)− dimen-
sional manifold with a nonconstant scalar curvature and F is a p(> 3)
- dimensional Einstein manifold, then there exist a constant λ and a
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nonconstant warping function f such that the resulting warped product
manifold M = B ×f2 F is an Einstein manifold with Ric = λg.

In this paper, the similar results are proved in case of 3 - dimensional
fiber manifolds, using a partial differential equation.

Remark 1.4. We denote by dimB = q(> 2) and dimF = 3. Then,
using Corollary 1.3 (ii) and (iii), we may replace the unique equation

(1.1) RicB − 3

f
Hf =

1

2
[ SB + 6

∆f

f
− 6

∥df∥2

f2
+ 3

λ0
f2

− (1 + q)λ ]gB,

where SB is a scalar curvature of B (See also (9.108) in [2, p.267]).

In order to solve Question A, we study equation (1.1) on M with

dimB = q(> 2) and dimF = 3. Recalling that RicB − 3

f
Hf = λgB and

that SB is a scalar curvature on B, equation (1.1) implies that we have
equation

(1.2) 0 = ∆f − ∥df∥2

f
+
λ0
2f

+
SB − (3 + q)λ

6
f.

From now on, we study the nonconstant solution of equation (1.2). If
SB = C is constant, then the solution f is maybe also constant. In case
that SB is not a constant, then the solution also is not a constant. So
we assume that SB is not a constant.

Using the change of variable f = e−u, equation (1.2) is changed into

(1.3) 0 = ∆u− SB(x)− (3 + q)λ

6
− λ0

2
e2u.

We put
λ0
2

= Cλ0 and
SB(x)− (3 + q)λ

6
= hλ(x) (a function depend-

ing on SB(x) and λ). Then equation (1.3) is changed into

(1.4) 0 = ∆u− hλ(x)− Cλ0e
2u,

where λ is a constant.
In order to solve equation (1.4), we consider the following functional

Jλ for a fixed constant λ, i.e.,

Jλ(u) =

∫
B |∇u|2dB − 2

∫
B hλ(x)udB∫

B e
2udB
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2. Main results

Let B be a compact connected manifold, which is not necessarily
orientable and possesses a given Riemannian structure g. We denote
the volume element of this metric by dB, the gradient by ∇, and the
associated Laplacian by ∆ (we use the sign convention which gives △u =
−uxx − uyy for the standard metric on R2). We let Hs,r(B) denote the
Sobolev space of functions on B whose derivatives through order s are
in Lr(B). The norm on Hs,r(B) will be denoted by || ||s,r. In the special
case s = 0, Hs,r(B) is just Lr(B), and we denote the norm by || ||r. We
have the following elementary inequality.

Lemma 2.1. For all v ∈ H1,2(B), if v ̸≡ 0 and
∫
B vdB = 0, then

(2.1)

∫
B
evdB > vol(B),

where vol(B) is the volume of B.

Proof. See [7, Theorem 2.5 and Corollary 1, p.3228].

By Lemma 2.1, if we choose a function v ∈ H1,2(B) and v is not
a constant, then

∫
B e

v−v̄dB > vol(B), where v̄ =
∫
B vdB. Hence we

can consider the functional Jλ on Vσ = {v ∈ H1,2(B) |v ̸≡ 0,
∫
B vdB =

0,
∫
B e

2v dB = σ} for some constant σ(> vol(B)),

Jλ(v) =

∫
B |∇v|2 dB − 2

∫
B hλ(x)v dB∫

B e
2v dB

=
1

σ
[

∫
B
|∇v|2 dB − 2

∫
B
hλ(x)v dB].

Theorem 2.2. For a fixed constant λ, let {vi} be a minimizing se-
quence in Vσ such that Jλ(vi) → C for some constant C. If vi → v0
in Vσ and Jλ(v0) = C, then equation (1.4) has a solution v0 for some
constant C.

Proof. For a fixed constant λ, let v0 satisfy

Jλ(v0) =

∫
B |∇v0|2 dB − 2

∫
B hλ(x)v0 dB∫

B e
2v0 dB

= C.
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For all ψ ∈ H1,2(B),

dJλ(v0 + tψ)

dt
|t=0

=
d

dt
[

∫
B(|∇v0 + t∇ψ|2 − 2hλ(x)(v0 + tψ)) dB∫

e2(v0+tψ) dB
] |t=0

=
1

(
∫
B e

2(v0+tψ) dB)2
[{
∫
B
2∇v0∇ψ dB − 2

∫
B
hλ(x)ψ dB

+2t

∫
B
|∇ψ|2 dB }{

∫
B
e2(v0+tψ) dB}

− {
∫
B
|∇v0 + t∇ψ|2 dB − 2

∫
B
hλ(x)(v0 + tψ) dB}

× {2
∫
B
e2(v0+tψ)ψ dB}] |t=0

=
1

(
∫
B e

2(v0) dB)2
[{2

∫
B
∇v0∇ψ dB − 2

∫
B
hλ(x)ψ dB}

× {
∫
B
e2(v0) dB} − {

∫
B
|∇v0|2 dB − 2

∫
B
hλ(x)v0 dB}

× {2
∫
B
e2(v0)ψ dB}] = 0.

Therefore∫
B
∇v0∇ψ dB −

∫
B
hλ(x)ψ dB − C

∫
B
e2(v0)ψ dB = 0,

for all ψ ∈ H1,2(B). Since ∆ is the negative Laplacian, we have

(2.2) ∆v0 − hλ(x)− Ce2v0 = 0,

where C is a constant.

For v ∈ H1,2(B), let v+(x) = max{0, v(x)} and v−(x) = min{0, v(x)}.
Then we know easily that 2v+(x) ≤ e2v

+(x)+2v−(x) = e2v(x) for each x,
hence we have the following key lemma.

Lemma 2.3. For a fixed constant λ, if v ∈ Vσ, then |
∫
B hλ(x)v dB| ≤

N0σ, where N0 = maxx∈B|hλ(x)|.

Proof. If v ∈ Vσ and
∫
B vdB = 0, then

∫
B |v|dB = 2

∫
B v

+dB. Hence∫
B |v|dB ≤

∫
B e

2vdB. Thus

|
∫
B
hλ(x)v dB| ≤ N0σ,
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where N0 = maxx∈B|hλ(x)|.

Theorem 2.4. On Vσ = {v ∈ H1,2(B)|v ̸≡ 0,
∫
B vdB = 0,

∫
B e

2vdB =
σ} for some constant σ(> vol(B)), the functional Jλ(v) is bounded below
for a fixed constant λ.

Proof. Since B is compact, maxx∈B |hλ(x)| ≤ N0 for some positive
constant N0. If v ∈ Vσ, then by Lemma 2.3

Jλ(v) ≥ 1

σ
[

∫
B
|∇v|2 dB − 2N0

∫
M

|v| dB]

≥ −2N0.

This means that Jλ(v) is bounded below on Vσ.

We consider the following functional Jλ for a fixed constant λ on
Vσ = {v ∈ H1,2(B)|v ̸≡ 0,

∫
B vdB = 0,

∫
B e

2v dB = σ} for some constant
σ(> vol(B)),

Jλ(v) =

∫
B |∇v|2dB − 2

∫
B hλ(x)vdB∫

B e
2vdB

=
1

σ
[

∫
B
|∇v|2dB − 2

∫
B
hλ(x)vdB].

Theorem 2.5. Let C = infv∈VσJλ(v) for a fixed constant λ and for

some constant σ(> vol(B)). If Cλ0 = λ0
2 = C, then there exists a

nonconstant solution of equation (1.4) for Cλ0 = λ0
2 = C.

Proof. Since hλ(x) is smooth on B, Theorem 2.4 implies that Jλ is
bounded below on Vσ. Hence there exists a minimizing sequence {vi}
in Vσ such that Jλ(vi) → C. Because Vσ is not empty, there is some
v1 ∈ Vσ. Hence there is a b > 0 such that Jλ(v1) < b and Jλ(vn) ≤ b for
all n.

For vn ∈ Vσ,

σJλ(vn) =

∫
B
|∇vn|2 dB − 2

∫
B
hλ(x)vn dB ≥

∫
B
|∇vn|2 dB − 2N0σ.

Hence
∫
B |∇vn|2 dB ≤ (b + 2N0)σ. It follows that ||vn||21,2 ≤ constant

for all n. Since the unit ball in any Hilbert space is weakly compact
([1,p.74]), there exist a subsequence {vi} of {vn} and a function v0 ∈
H1,2(B) such that :

i) vi → v0 strongly in L2(B)
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ii) vi → v0 weakly in H1,2(B)

iii) vi → v0 pointwise almost everywhere.

This implies that
∫
B e

2v0 dB = σ,
∫
B v0dB = 0 and

∫
B hλ(x)vi dB →∫

B hλ(x)v0 dB. Therefore v0 ∈ Vσ. Hence Jλ(v0) ≥ C.

To conclude that v0 minimizes Jλ for all v ∈ Vσ, we use the general
result that whenever vn converges to v0 weakly in a Hilbert space, then
||∇v0||2 ≤ lim inf ||∇vn||2. Thus Jλ(v0) ≤ Jλ(vn) for all n and Jλ(v0) ≤
C. Therefore v0 minimizes Jλ in Vσ.

Theorem 2.6. Let Vσ = {v ∈ H1,2(B)|v ̸≡ 0,
∫
B vdB = 0,

∫
B e

2vdB =
σ} for some constant σ(> vol(B)). For each λ0, there exists a constant
λ such that

infv∈VσJλ =
λ0
2
,

which implies that Question A holds.

Proof. Since B is compact, the scalar curvature SB(x) is bounded.

Hence hλ(x) → −∞ as λ → ∞. And 0 < δ ≤ infv∈Vσ

∫
B |v|dB∫
B e

2vdB
≤ 1,

where δ is a positive constant ( If infv∈Vσ

∫
B |v|dB∫
B e

2vdB
= 0, then lim

∫
B |vn|dB =

0 , which means a contradiction to the fact that σ =
∫
B e

2vndB →
vol(B).). Therefore infv∈VσJλ → −∞ as λ→ ∞ . Similarly infv∈VσJλ →
+∞ as λ→ −∞. Since Jλ is linear with respect to λ, for each λ0 there
exists a constant λ such that

infv∈VσJλ =
λ0
2
.

Therefore Theorem 2.5 implies that there exists a nonconstant warp-
ing function v0 such that v0 is a solution of equation (1.4), which implies
that the warped product manifold M = B ×f2 F is an Einstein mani-
fold.



242 Yoon-Tae Jung

References

[1] T. Aubin, Nonlinear analysis on manifolds, Springer-Verlag, New York, 1982.
[2] A. L. Besse, Einstein manifolds, Springer-Verlag, New York, 1987.
[3] J. K. Beem and P. E. Ehrlich, Global Lorentzian geometry, Pure and Applied

Mathematics, 67 Dekker, New York, 1981.
[4] J. K. Beem, P. E. Ehrlich and K.L. Easley, Global Lorentzian Geometry (2nd

ed.), Marcel Dekker, Inc., New York, 1996.
[5] J. K. Beem, P. E. Ehrlich and Th.G. Powell, Warped product manifolds in rela-

tivity, Selected Studies (Th.M.Rassias, eds.), North-Holland, 1982, 41-56.
[6] Y. T. Jung, Einstein warped product manifolds with p(> 3)− dimensional fiber

manifolds, submitted
[7] Y. T. Jung, S. Y. Lee, and E. H. Choi, Ricci curvature of conformal deformation

on compact 2-manifolds, Commun. Pure Appl. Anal., 19, (2020), no. 6, 3223-
3231.

[8] J. L. Kazdan, Some applications of partial differential equations to problems in
geometry, 1983.

[9] D. S. Kim, Einstein warped product spaces, Honam Mathematical J., 22 (2000),
no.1, 7-111.

[10] D. S. Kim, Compact Einstein warped product spaces, Trends in Mathematics
Information center for Mathematical Sciences. 5 (2002), no. 2, December, 1-5.

[11] D. S. Kim and Y. H. Kim, Compact Einstein warped product spaces with non-
positive scalar curvature, Proc. Amer. Math. Soc., 131 (2003), no.8, 2573-2576.

[12] B. O’Neill, Semi-Riemannian Geometry, Academic, New York, 1983.

Yoon-Tae Jung
Department of Mathematics
Chosun University
Kwangju, 61452, Republic of Korea
E-mail : ytajung@chosun.ac.kr

https://link.springer.com/book/10.1007/978-1-4612-5734-9
https://link.springer.com/book/10.1007/978-3-540-74311-8
https://www.researchgate.net/publication/44355905_Global_lorentzian_geometry_John_K_Been_Paul_E_Ehrlich
https://www.researchgate.net/publication/327916797_Global_lorentzian_geometry_second_edition
https://www.researchgate.net/publication/240406127_Warped_product_manifolds_in_relativity
https://www.aimsciences.org/article/exportPdf?id=390729af-ff9f-4552-98d5-6c4c93f1fdbc
https://www2.math.upenn.edu/~kazdan/japan/japan.pdf
https://koreascience.kr/article/JAKO200010102447795.page
https://www.researchgate.net/profile/Dong-Soo-Kim-2/publication/242142822_Einstein_warped_product_spaces/links/540f720a0cf2df04e75a305c/Einstein-warped-product-spaces.pdf
https://www.ams.org/journals/proc/2003-131-08/S0002-9939-03-06878-3/
https://books.google.co.kr/books/about/Semi_Riemannian_Geometry_With_Applicatio.html?id=CGk1eRSjFIIC&redir_esc=y



