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MODIFIED KOSZUL COMPLEXES IN A QUANTUM
SPACE RING

KIsSuk LEE

ABSTRACT. In this article, we define a modified Koszul complex,
which we call a quantized Koszul complex, on a quantum space
ring, and we also prove that it is an acyclic complex.

1. Backgrounds and preliminaries

In [2], Koh explained how some of properties of the sheaf cohomol-
ogy on the projective schemes could be understood from some properties
of graded modules; Serre Duality was derived as a consequence of the
graded version of the Local Duality in the polynomial ring. He also intro-
duced a quantum space ring R = k[x1,- -+ ,Tnq,; (here, k is a field,and
¢ij € k —{0}), and claimed that ’Serre Duality for R’ would hold by a
similar argument: H*(X, M) = Hom(Ext""{(M~,D"~),k) for all i > 0
where D = R(—n), and M is a finitely generated R-module ([3]).

In this article, we don’t establish Serre Duality for R, but we modify
a Koszul complex which is known to be an important tool for under-
standing local cohomology modules: Local cohomology modules can be
explained as limits of Koszul complexes ([1,6]).

We first recall the definition of a Koszul complex ([5]). Let A be aring
and x1, -+ ,x, € A. We define a complex K, as follows: Let Ky = A,
and for 1 < p < n, K, = @Aeilmip be the free A-module of rank (Z)
with a basis {e;;..;, : 1 <i1 < --- <1, < n}. The p-th differential map
d: K, — Kj,_1 is defined by

p

d(eioi,) = ) (1) wie;

r=1

ip

Received March 31, 2022; Accepted May 31, 2022.
2010 Mathematics Subject Classification: 13D03,13D45.
Key words and phrases: Koszul complex, Local duality, Quantum space ring.



198 Kisuk Lee

(for p = 1, d(e;) = =x;). This complex is called the Koszul complex,
denoted by Ke(z1, - ,2p).

EXAMPLE 1.1. For x1,z2,23 € A, (i) d(e1) = 1, d(e2) = x2, (ii)
d(elg) = T1€2 —Tge€1, d(elg) = T1€3—T3€1, d(egg) = I9€3 —T3€2, and (iﬁ)
d(eje3) = x1€93 — xoe13 + x3eio. Thus the Koszul complex of x1,x2, x3

1S

K.(xl,xg,:cg):O—)Rﬂ)R?’ 2y p3 i>R—>0,

T —x9 T 0
wheredy = | 22 |[,do=| —x3 0 21 |,andds = [ T3 —To X1 ]
T3 0 —Ir3 X2
—de) | X 12 5
We note that ds = | —— —— |, where dg ) is a t-th differential
0o | d?

map of a Koszul complex of xs, x3.

Like the above example, we may understand a Koszul complex with
the maps represented by matrices as follows; the proof can be done by
using an induction.

Fact 1.2. Let x1,--- ,z, be in a commutative ring A, and let dél) be
the /-th differential map of a Koszul complex of x1,---,x,. We denote
by déQ) the £-th differential map of a Koszul complex of xs,-- - , x,. Then
for 1 < ¢ <n,

where I is an identity matrix of a proper dimension.

For an A-module M, we define Kq(x, M) = Ko(x) ® M. The Koszul
complex K,o(x, M) has homology groups H,(Ke(x,M)), which we ab-
breviate to H,(x,M). The ideal (x) = (x1,---,zy) annihilates the
homology groups H,(x,M). A Koszul complex plays an important
role in a commutative algebra, for examples, it is known ([4]) that
(1) if z1,- -,z is an M-sequence, then Hy(x, M) = 0 for p > 0 and
Ho(x,M) = M/xM, and (2) if I = (y1, -+ ,yn) is an ideal of A and
M # IM, then depth(I,M) = n —sup{i : H;(y,M) # 0}, which is
called ’depth sensitivity’ of the Koszul complex.
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2. Main theorems

In [2], Koh introduced the definition of the left spectrum of a non-
commutative ring due to Rosenberg ([5]), and as a special case, he took
a quantum space ring R = k[z1, -+ ,2p]y, (here, k is a field) with
zix; = gqijxjz; for ¢;; € k — {0}. He thought that like a commuta-
tive case, there would be an equvalence between the category of quasi-
coherent sheaves on Proj(R) and the category of graded R-modules mod
the subcategory which is generated by the modules of finite length. He
believed that Serre Duality would hold for Proj(R).

In this section, we define a quantized Koszul complex, and pove that
it is acyclic, which may be a first step to eastablish Serre Duality for
Proj(R).

Let Ko(z1,- -+ ,2p) be a Koszul complex of 21, - -, zp in klz1, - -+, 2p),
and dy, : Kp — K,_1 be the p-th differential map of Ko(x1, - ,z,). We
know that d, is represented by an (;) X (pfl) matrix (Fact 1.2). Let
b(p)i; be an (ij)-th entry of d,, where b(p);; = Ti(p)i;» —Tt(p)y;» OF 0, and
1 S t(p)z‘j S n.

Let R = k[z1, -+ ,%p]q;. We define a complex Q¢(z1,--,7,) as
follows: set Qo = R, and @, = 0 if p is not in the range 0 < p < n.
For 1 <p<mn,let Q, = BRe,, ., be the free R-module of rank (Z)
with a basis {€;;..;, : 1 <i1 < --- <1, < n}. The p-th differential map
Op 1 Qp = Qp—1 of Qo is defined by an (Z) X (pfl) matrix with an
(2j)-th entry a(p)i;b(p)i;j, where b(p);; is an (ij)-th entry of d,, of a p-th
differential map of K, as above, and a(p):; =1 (i.e., for i = 1),

i—1 .
L 3 g Q)egtp);  HB(P)i # 0
olp)s = [ etprrlss where ep.ryy = { 104100 o 7
DEFINITION 2.1. The complex (Qe¢(x1, - ,Zy),0s), which is defined
in the above, is called a quantized Koszul complex of z1,--- ,z, in R.

EXAMPLE 2.2. The differential maps of a Koszul complex Ko(1, 22, 23)

X1 —X9 I 0
are d1 = X9 y dg = —XI3 0 T1 y and d3 = [ r3 —T2 X1 ]
T3 0 —x3 X2

Then when 01 = [a(1);;b(1);;] and b(1)11 = x1, we can see that b(1)2 =
x2, b(1)31 = x3. Also, a(1)11 = 1, a(l)21 = ¢(1,1)21 = qi2 (t(1)11 =
Lit(1)21 = 2), a(1)31 = ¢(1,1)31¢(1,2)31 = q13ge3 (t(1)11 = 1,t(1)31 =
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I
3,t(1)21 = 2,t(1)31 = 3) Thus, 81 = q12x2 . If82 = [a(2)¢jb(2)ij],
42391373
then a(2)e1 = c(2,1)a1 = G2)1,6@)m = 923, a(2)2z = ¢(2,1)23 = 1
since b(2)13 = 0. Also a(2)3e = 0(2, 1)32¢(2,2)32 = Gu(2)10t(2)32 =
q13 since b(2)22 = 0, and so ¢(2,2)32 = 1. We can check a(2)33 =
6(2, 1)336( ) 2)23t(2)33 = q12, and so on. Thus
— X9 T 0
82 = —(23x3 0 T s and 83 = [ r3 —IT2 X1 ] .
0 —q13T3 1272
(z1-+-24)

In a similar manner, if 0,

Qe(71,T2,73,24), then we can see that

is the 2nd differential map of a complex

—xX9 I 0 0
—q2373 0 T 0
plarma) _ | —d34924%4 0 0 x1
2 N 0 —q1373 q 0
1202
0 —(34G1474 0 q1272
i 0 0 —q24914%4  §23G1373 |

Like Fact 1.2, we can formulate the maps in a quantized Koszul com-
plex with the form of matrices as follows; we leave the proof for the
reader.

PROPOSITION 2.3. Let Q¢(x1,- - ,2,) be a quantized Koszul com-
plex, and 85" its p-th differential map. If 9\ ™) = [a(£)i;b(€);;]

is an (-th differential map of a quantized Koszul complex of xo, - - -
then

y L,

SO
e = | I T
where 8](3*““'%) = [@11(p);;2(P)i50(P)i5]-

REMARK 2.4. It is easy to show that 8,(,*362"':”") = 01(,‘“2:62”13333"" Antn)

which is a p-th differential map of a quantized Koszul complex of giox2,
q1323; 5 qinTn-

Now, we prove that a quantized Koszul complex is really a complex.

THEOREM 2.5. A quantized Koszul complex of x1, - - -
tum space ring R is a complex, i.e., 9, - 0,—1 = 0.

, Ty In a quan-
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Proof. Let’s use an induction on n. Forn=1,0 - R =% R — 0 is
a complex. Also, forn =2,0 — R 2, R? 9, R — 0 is a complex,

where 0y = [ —x9 T1 ], and 01 = [ qx; } Suppose that it is true
1272

for the elements whose number is less than n, i.e., Qeo(zi, - ,2;,) is a

complex if t < n. Then we have 8;,“”%") . 3;{21'%") =0forl1<p<n.

We note that

a}(}m---xn) ) 8(3ili"xn)

P
0 | oy 0 | gl
Since 81(){21"“”) . 81()322”%") = 0 by induction hypothesis, it is enough to
show that
I I
(a) —a]gizl'"“) | x1-1 - - =0, and
p—1

(b) Q=) glrteen) = o,

For (a), we note that

I I
i-th row of [ —81(7_21'":5") | -1 ] X j-th column of (— - = :
8p_1'12 Tn

= —a(p—1)ib(p — Dijz1 + 21{qui(p-1);;a(p — 1)ijb(p — 1)}

= —21{qup-1),;0(p — 1)ijb(p — Dij} + z1{que(p—1),;,0(p — 1)ijb(p — 1)i5}
('since Ty(p_1),, 21 = Gue(p—1),; L1 %4(p—1),, )

= 0

For (b), we use the facts that 81(,”2'"1”) = 8}(,(11”2’(1133‘“3""’qlnx"), and
klxi, -+, xpnlg. 18 isomorphic to k|qii1x1, - , ¢inTnlq,. Then by an in-

qij 1% q q qij Y
duction hypothesis,

a}()*xg...mn) . a;*:tfxn) — 81(;112552“'(]17#571) . 8;(]:%12(]1n33n) — 0
In all, we have proved that 0, - 9,—1 = 0, which means that a quantized

Koszul complex of x1,--- ,x, in a quantum space ring R is a complex.
O

A complex G, of a ring A-mdules is said to be acyclic if H;(Go) =
0 for ¢ > 0. For example, a quantized Koszul complex Qe(z1,22) is
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acyclic: 0 — Qo &) 1 i> Qo — 0, where 0 = [ —T2 I1 ]’ and

0 = { qxé ] Let (r1,72) be any element of the kernel of ;. Then
1272

r1z1 +reqi2x2 = 0, and so r2q12 € (x1). If rogia = 321 for some 735 € R,

then we have

* * *
0 = rz1+r2qiexe = rix1+ryx1x2 = rix1+rygeirery = (r+ryq122)x1,
and so r; + r3ga1x2 = 0. Thus,

Do(r3qa1) = (r5qn)| —22 21 |
= (=(r3qo1)z2, (r3q21)21) = (r1,r2q12¢21) = (7r1,72),

e, Qe(x1,x2) is exact at Q.

The following theorem shows that a quantized Koszul complex is
acyclic.

THEOREM 2.6. A quantized Koszul complex of x1,--- ,x, in a quan-
tum space ring R is acyclic.

Proof. We use an induction on the number of x;. For z1, z2, we have
proved in the above. We assume that it is acyclic for the elements x;
whose number is less than n, for example, (Qe(z2, - ,zy), 85332"'36”)) is
acyclic.

We first show that there is a short exact sequence of complexes as
follows:

Let €0 = (Qu(wz, -+, 2a), 8™ ™), Da = (Qu(a1, -+ ), 7)),

and §e = (Qe(z2,- -+ ,Zn), 85962“%")). Then we have

o

0 — Q:p_l fp—7§ Qp—l ng_4> Sp_g — 0
T T T
0 — ¢ oo, 5. — 0

T T T

where if €, = R®2, ®,, = R®'"%2 and §,_1 = R®, then f,: €, » D, is
defined by fp(r1,--+ ,7s) = (0,---,0,71,- -+ ,7s,), and gp : Dp — Fp—1 18
defined by gp(rh sy Tsp 1, 7T51+S2) = (7'1, e 7r81)‘ By chasing
a diagram, we can see that it is a short exact sequence of complexes.
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Next, from this short exact sequence of complexes, we have a long
exact sequence of homologies

—>Hp(q12$27"' ’qlnl‘n,R) — Hp(xlj'-. 7fL'naR)

— prl(an"' >$naR)
xr
—1> Hp—l(q12x27 o aQIan) —

where Hp_1(z2, -+ ,2n, R) LN H,_1(q1222, -+ ,qin, R) is defined by a
multiplication by ;. Indeed, for an element (rq,---,r,) in the kernel

of az(:?l,---:vn),

gp(rl)"' 7TS17Oa"' 70)

= (Tla"' ,Ts1)
agcl.--zn)(rh.., T, 0, ,0)

= (_6522'“171)(7,1"” 7T81)7xlrla"' ,Ilrsl)

= (07 707xlrla"' 71’17”31)E©p71
aétzlz-nxn)(xlrl’ e 7:517-81)

- 61()‘1_121’2""11n$n)(x1r1’ T 7$1Ts1)

— 8}()I_Qlwn) (7.17 Ce 7T51) (Since q1951 = ]_)

= O7

which means that z; - (71, ,7s,) is in the kernel of 8I(:<_x12-~:cn)

For p > 1, we have an exact sequence

i Hp(Q12$27"' 7q1n$n7R) — Hp(l‘l,“’ ,.’L’n,R)

— Hy_i(x2,-- ,zp,R) = .
By the induction hypothesis, H,_1(z2,-- , 2y, R) = 0. Thus we know
that Hy(qiaz2,- -+, qin, R) is also 0 since k[z1,- - ,%p]q,; is isomorphic
to k[qu171, -+ , qinTnlq,;- Hence Hy(x1, -+ ,2n, R) = 0.

For p = 1, we have an exact sequence

"'—>H1($1,"',xn,R) — H()(.’L'Q,"',xn,R)
5 Ho(quaza,  , qun®n, R) — -+ .
We note that
HO(:C27 o ax’an) = R/(:EZa e 73371)7 and
Ho(qi22, -+, qinTn, R) = R/(q12%2, -+, q1nTn).

We know that Hy(z1,- -+ ,zy, R) is also 0 since z is a nonzero divisor
of R/(xg,--+ ,xy). This completes the proof. O
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