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MODIFIED KOSZUL COMPLEXES IN A QUANTUM

SPACE RING

Kisuk Lee

Abstract. In this article, we define a modified Koszul complex,
which we call a quantized Koszul complex, on a quantum space
ring, and we also prove that it is an acyclic complex.

1. Backgrounds and preliminaries

In [2], Koh explained how some of properties of the sheaf cohomol-
ogy on the projective schemes could be understood from some properties
of graded modules; Serre Duality was derived as a consequence of the
graded version of the Local Duality in the polynomial ring. He also intro-
duced a quantum space ring R = k[x1, · · · , xn]qij (here, k is a field,and
qij ∈ k − {0}), and claimed that ’Serre Duality for R’ would hold by a
similar argument: H i(X,M) ∼= Hom(Extn−i(M∼, D∼), k) for all i ≥ 0
where D = R(−n), and M is a finitely generated R-module ([3]).

In this article, we don’t establish Serre Duality for R, but we modify
a Koszul complex which is known to be an important tool for under-
standing local cohomology modules: Local cohomology modules can be
explained as limits of Koszul complexes ([1,6]).

We first recall the definition of a Koszul complex ([5]). Let A be a ring
and x1, · · · , xn ∈ A. We define a complex K• as follows: Let K0 = A,
and for 1 ≤ p ≤ n, Kp = ⊕Aei1···ip

be the free A-module of rank
(
n
p

)
with a basis {ei1···ip : 1 ≤ i1 < · · · < ip ≤ n}. The p-th differential map
d : Kp → Kp−1 is defined by

d(ei1···ip) =

p∑
r=1

(−1)r−1xirei1···îr···ip
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(for p = 1, d(ei) = xi). This complex is called the Koszul complex,
denoted by K•(x1, · · · , xn).

Example 1.1. For x1, x2, x3 ∈ A, (i) d(e1) = x1, d(e2) = x2, (ii)
d(e12) = x1e2−x2e1, d(e13) = x1e3−x3e1, d(e23) = x2e3−x3e2, and (iii)
d(e123) = x1e23 − x2e13 + x3e12. Thus the Koszul complex of x1, x2, x3
is

K•(x1, x2, x3) : 0→ R
d3−→ R3 d2−→ R3 d1−→ R→ 0,

where d1 =

 x1
x2
x3

, d2 =

 −x2 x1 0
−x3 0 x1

0 −x3 x2

, and d3 =
[
x3 −x2 x1

]
.

We note that d2 =

 −d(2)1 | x1 · I2
−− −−
0 | d

(2)
2

, where d
(2)
t is a t-th differential

map of a Koszul complex of x2, x3.

Like the above example, we may understand a Koszul complex with
the maps represented by matrices as follows; the proof can be done by
using an induction.

Fact 1.2. Let x1, · · · , xn be in a commutative ring A, and let d
(1)
` be

the `-th differential map of a Koszul complex of x1, · · · , xn. We denote

by d
(2)
` the `-th differential map of a Koszul complex of x2, · · · , xn. Then

for 1 ≤ ` ≤ n,

d
(1)
` =

 −d(2)`−1 | x1 · I
−−− −−−

0 | d
(2)
`

 ,

where I is an identity matrix of a proper dimension.

For an A-module M , we define K•(x,M) = K•(x)⊗M . The Koszul
complex K•(x,M) has homology groups Hp(K•(x,M)), which we ab-
breviate to Hp(x,M). The ideal (x) = (x1, · · · , xn) annihilates the
homology groups Hp(x,M). A Koszul complex plays an important
role in a commutative algebra, for examples, it is known ([4]) that
(1) if x1, · · · , xn is an M -sequence, then Hp(x,M) = 0 for p > 0 and
H0(x,M) = M/xM , and (2) if I = (y1, · · · , yn) is an ideal of A and
M 6= IM , then depth(I,M) = n − sup{i : Hi(y,M) 6= 0}, which is
called ’depth sensitivity’ of the Koszul complex.
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2. Main theorems

In [2], Koh introduced the definition of the left spectrum of a non-
commutative ring due to Rosenberg ([5]), and as a special case, he took
a quantum space ring R = k[x1, · · · , xn]qij (here, k is a field) with
xixj = qijxjxi for qij ∈ k − {0}. He thought that like a commuta-
tive case, there would be an equvalence between the category of quasi-
coherent sheaves on Proj(R) and the category of graded R-modules mod
the subcategory which is generated by the modules of finite length. He
believed that Serre Duality would hold for Proj(R).

In this section, we define a quantized Koszul complex, and pove that
it is acyclic, which may be a first step to eastablish Serre Duality for
Proj(R).

Let K•(x1, · · · , xn) be a Koszul complex of x1, · · · , xn in k[x1, · · · , xn],
and dp : KP → Kp−1 be the p-th differential map of K•(x1, · · · , xn). We
know that dp is represented by an

(
n
p

)
×
(

n
p−1

)
matrix (Fact 1.2). Let

b(p)ij be an (ij)-th entry of dp, where b(p)ij = xt(p)ij , −xt(p)ij , or 0, and

1 ≤ t(p)ij ≤ n.

Let R = k[x1, · · · , xn]qij . We define a complex Q•(x1, · · · , xn) as
follows: set Q0 = R , and Qp = 0 if p is not in the range 0 ≤ p ≤ n.
For 1 ≤ p ≤ n, let Qp = ⊕Rei1···ip

be the free R-module of rank
(
n
p

)
with a basis {ei1···ip : 1 ≤ i1 < · · · < ip ≤ n}. The p-th differential map

∂p : Qp → Qp−1 of Q• is defined by an
(
n
p

)
×
(

n
p−1

)
matrix with an

(ij)-th entry a(p)ijb(p)ij , where b(p)ij is an (ij)-th entry of dp of a p-th
differential map of K• as above, and a(p)1j = 1 (i.e., for i = 1),

a(p)ij =
i−1∏
r=1

c(p, r)ij , where c(p, r)ij = { qt(p)rjt(p)ij if b(p)ij 6= 0

1 if b(p)ij = 0
.

Definition 2.1. The complex (Q•(x1, · · · , xn), ∂•), which is defined
in the above, is called a quantized Koszul complex of x1, · · · , xn in R.

Example 2.2. The differential maps of a Koszul complex K•(x1, x2, x3)

are d1 =

 x1
x2
x3

, d2 =

 −x2 x1 0
−x3 0 x1

0 −x3 x2

, and d3 =
[
x3 −x2 x1

]
.

Then when ∂1 = [a(1)ijb(1)ij ] and b(1)11 = x1, we can see that b(1)21 =
x2, b(1)31 = x3. Also, a(1)11 = 1, a(1)21 = c(1, 1)21 = q12 (t(1)11 =
1, t(1)21 = 2), a(1)31 = c(1, 1)31c(1, 2)31 = q13q23 (t(1)11 = 1, t(1)31 =
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3, t(1)21 = 2, t(1)31 = 3). Thus, ∂1 =

 x1
q12x2

q23q13x3

. If ∂2 = [a(2)ijb(2)ij ],

then a(2)21 = c(2, 1)21 = qt(2)11t(2)21 = q23, a(2)23 = c(2, 1)23 = 1
since b(2)13 = 0. Also, a(2)32 = c(2, 1)32c(2, 2)32 = qt(2)12t(2)32 =
q13 since b(2)22 = 0, and so c(2, 2)32 = 1. We can check a(2)33 =
c(2, 1)33c(2, 2)33 = qt(2)23t(2)33 = q12, and so on. Thus

∂2 =

 −x2 x1 0
−q23x3 0 x1

0 −q13x3 q12x2

 , and ∂3 =
[
x3 −x2 x1

]
.

In a similar manner, if ∂
(x1···x4)
2 is the 2nd differential map of a complex

Q•(x1, x2, x3, x4), then we can see that

∂
(x1···x4)
2 =


−x2 x1 0 0
−q23x3 0 x1 0
−q34q24x4 0 0 x1

0 −q13x3 q12x2 0
0 −q34q14x4 0 q12x2
0 0 −q24q14x4 q23q13x3

 .

Like Fact 1.2, we can formulate the maps in a quantized Koszul com-
plex with the form of matrices as follows; we leave the proof for the
reader.

Proposition 2.3. Let Q•(x1, · · · , xn) be a quantized Koszul com-

plex, and ∂
(x1···xn)
p its p-th differential map. If ∂

(x2···xn)
` = [a(`)ijb(`)ij ]

is an `-th differential map of a quantized Koszul complex of x2, · · · , xn,
then

∂(x1···xn)
p =

 −∂(x2···xn)
p−1 | x1 · I
−−− −−−

0 | ∂
(∗x2···xn)
p

 ,

where ∂
(∗x2···xn)
p = [q1t(p)ija(p)ijb(p)ij ].

Remark 2.4. It is easy to show that ∂
(∗x2···xn)
p = ∂

(q12x2,q13x3,··· ,q1nxn)
p ,

which is a p-th differential map of a quantized Koszul complex of q12x2,
q13x3, · · · , q1nxn.

Now, we prove that a quantized Koszul complex is really a complex.

Theorem 2.5. A quantized Koszul complex of x1, · · · , xn in a quan-
tum space ring R is a complex, i.e., ∂p · ∂p−1 = 0.
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Proof. Let’s use an induction on n. For n = 1, 0 → R
x1−→ R → 0 is

a complex. Also, for n = 2, 0 → R
∂2−→ R2 ∂1−→ R → 0 is a complex,

where ∂2 =
[
−x2 x1

]
, and ∂1 =

[
x1

q12x2

]
. Suppose that it is true

for the elements whose number is less than n, i.e., Q•(xi1 , · · · , xit) is a

complex if t < n. Then we have ∂
(x2···xn)
p · ∂(x2···xn)

p−1 = 0 for 1 ≤ p ≤ n.
We note that

∂
(x1···xn)
p · ∂(x1···xn)

p−1

=

 −∂(x2···xn)
p−1 | x1 · I
−−− −−−

0 | ∂
(∗x2···xn)
p


 −∂

(x2···xn)
p−2 | x1 · I
−−− −−−

0 | ∂
(∗x2···xn)
p−1

 .

Since ∂
(x2···xn)
p−1 · ∂(x2···xn)

p−2 = 0 by induction hypothesis, it is enough to
show that

(a)
[
−∂(x2···xn)

p−1 | x1 · I
] x1 · I

−−−
∂
(∗x2···xn)
p−1

 = 0, and

(b) ∂
(∗x2···xn)
p · ∂(∗x2···xn)

p−1 = 0.

For (a), we note that

i-th row of
[
−∂(x2···xn)

p−1 | x1 · I
]
× j-th column of

 x1 · I
−−−

∂
(∗x2···xn)
p−1


= −a(p− 1)ijb(p− 1)ijx1 + x1{q1t(p−1)ija(p− 1)ijb(p− 1)ij}
= −x1{q1t(p−1)ija(p− 1)ijb(p− 1)ij}+ x1{q1t(p−1)ija(p− 1)ijb(p− 1)ij}

( since xt(p−1)ijx1 = q1t(p−1)ijx1xt(p−1)ij )

= 0

For (b), we use the facts that ∂
(∗x2···xn)
p = ∂

(q12x2,q13x3,··· ,q1nxn)
p , and

k[x1, · · · , xn]qij is isomorphic to k[q11x1, · · · , q1nxn]qij . Then by an in-
duction hypothesis,

∂(∗x2···xn)
p · ∂(∗x2···xn)

p−1 = ∂(q12x2···q1nxn)
p · ∂(q12x2···q1nxn)

p−1 = 0.

In all, we have proved that ∂p · ∂p−1 = 0, which means that a quantized
Koszul complex of x1, · · · , xn in a quantum space ring R is a complex.

A complex G• of a ring A-mdules is said to be acyclic if Hi(G•) =
0 for i > 0. For example, a quantized Koszul complex Q•(x1, x2) is
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acyclic: 0 → Q2
∂2−→ Q1

∂1−→ Q0 → 0, where ∂2 =
[
−x2 x1

]
, and

∂1 =

[
x1

q12x2

]
. Let (r1, r2) be any element of the kernel of ∂1. Then

r1x1 +r2q12x2 = 0, and so r2q12 ∈ 〈x1〉. If r2q12 = r∗2x1 for some r∗2 ∈ R,
then we have

0 = r1x1+r2q12x2 = r1x1+r∗2x1x2 = r1x1+r∗2q21x2x1 = (r1+r∗2q21x2)x1,

and so r1 + r∗2q21x2 = 0. Thus,

∂2(r
∗
2q21) = (r∗2q21)

[
−x2 x1

]
= (−(r∗2q21)x2, (r

∗
2q21)x1) = (r1, r2q12q21) = (r1, r2),

i.e., Q•(x1, x2) is exact at Q2.

The following theorem shows that a quantized Koszul complex is
acyclic.

Theorem 2.6. A quantized Koszul complex of x1, · · · , xn in a quan-
tum space ring R is acyclic.

Proof. We use an induction on the number of xi. For x1, x2, we have
proved in the above. We assume that it is acyclic for the elements xi
whose number is less than n, for example, (Q•(x2, · · · , xn), ∂

(x2···xn)
• ) is

acyclic.
We first show that there is a short exact sequence of complexes as

follows:
Let C• = (Q•(x2, · · · , xn), ∂

(∗x2···xn)
• ), D• = (Q•(x1, · · · , xn), ∂

(x1···xn)
• ),

and F• = (Q•(x2, · · · , xn), ∂
(x2···xn)
• ). Then we have

...
...

...
↑ ↑ ↑

0 −→ Cp−1
fp−1−→ Dp−1

gp−1−→ Fp−2 −→ 0
↑ ↑ ↑

0 −→ Cp
fp−→ Dp

gp−→ Fp−1 −→ 0
↑ ↑ ↑
...

...
...

where if Cp = Rs2 , Dp = Rs1+s2 , and Fp−1 = Rs1 , then fp : Cp → Dp is
defined by fp(r1, · · · , rs2) = (0, · · · , 0, r1, · · · , rs2), and gp : Dp → Fp−1 is
defined by gp(r1, · · · , rs1 , rs1+1, · · · , rs1+s2) = (r1, · · · , rs1). By chasing
a diagram, we can see that it is a short exact sequence of complexes.
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Next, from this short exact sequence of complexes, we have a long
exact sequence of homologies

· · · → Hp(q12x2, · · · , q1nxn, R) → Hp(x1, · · · , xn, R)
→ Hp−1(x2, · · · , xn, R)
x1−→ Hp−1(q12x2, · · · , q1n, R)→ · · · ,

where Hp−1(x2, · · · , xn, R)
x1−→ Hp−1(q12x2, · · · , q1n, R) is defined by a

multiplication by x1. Indeed, for an element (r1, · · · , rn) in the kernel

of ∂
(x2,···xn)
p−1 ,

gp(r1, · · · , rs1 , 0, · · · , 0)
= (r1, · · · , rs1)

∂
(x1···xn)
p (r1, · · · , rs1 , 0, · · · , 0)

= (−∂(x2···xn)
p (r1, · · · , rs1), x1r1, · · · , x1rs1)

= (0, · · · , 0, x1r1, · · · , x1rs1) ∈ Dp−1

∂
(∗x2···xn)
p−1 (x1r1, · · · , x1rs1)

= ∂
(q12x2···q1nxn)
p−1 (x1r1, · · · , x1rs1)

= ∂
(x2···xn)
p−1 (r1, · · · , rs1) (since q1jqj1 = 1)

= 0,

which means that x1 · (r1, · · · , rs1) is in the kernel of ∂
(∗x2···xn)
p−1 .

For p > 1, we have an exact sequence

· · · → Hp(q12x2, · · · , q1nxn, R) → Hp(x1, · · · , xn, R)
→ Hp−1(x2, · · · , xn, R)→ · · · .

By the induction hypothesis, Hp−1(x2, · · · , xn, R) = 0. Thus we know
that Hp(q12x2, · · · , q1n, R) is also 0 since k[x1, · · · , xn]qij is isomorphic
to k[q11x1, · · · , q1nxn]qij . Hence Hp(x1, · · · , xn, R) = 0.

For p = 1, we have an exact sequence

· · · → H1(x1, · · · , xn, R) −→ H0(x2, · · · , xn, R)
x1−→ H0(q12x2, · · · , q1nxn, R)→ · · · .

We note that

H0(x2, · · · , xn, R) ∼= R/(x2, · · · , xn), and
H0(q12x2, · · · , q1nxn, R) ∼= R/(q12x2, · · · , q1nxn).

We know that H1(x1, · · · , xn, R) is also 0 since x1 is a nonzero divisor
of R/(x2, · · · , xn). This completes the proof.
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