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NOTE ON THE PINNED DISTANCE PROBLEM OVER

FINITE FIELDS

Doowon Koh

Abstract. Let Fq be a finite field with odd q elements. In this
article, we prove that if E ⊆ Fd

q , d ≥ 2, and |E| ≥ q, then there

exists a set Y ⊆ Fd
q with |Y | ∼ qd such that for all y ∈ Y , the

number of distances between the point y and the set E is ∼ q. As
a corollary, we obtain that for each set E ⊆ Fd

q with |E| ≥ q, there

exists a set Y ⊆ Fd
q with |Y | ∼ qd so that any set E ∪ {y} with

y ∈ Y determines a positive proportion of all possible distances.
The averaging argument and the pigeonhole principle play a crucial
role in proving our results.

1. Introduction

Let Fdq be the d-dimensional vector space over the finite field Fq with q
elements. In 2005, Iosevich and Rudnev [5] initially posed and studied an
analogue of the Falconer distance problem over finite fields. They asked
for the minimal exponent α > 0 such that if E ⊆ Fdq and |E| ≥ Cqα for
a sufficiently large constant C > 0, then

|∆(E)| ≥ cq
for some constant 0 < c ≤ 1, where |∆(E)| denotes the cardinality of
the distance set ∆(E), defined by

∆(E) = {||x− y|| : x, y ∈ E}.

Here we recall that ||α|| :=
d∑
j=1

α2
j for α = (α1, . . . , αd) ∈ Fdq .
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By developing the discrete Fourier machinery, Iosevich and Rudnev
[5] proved that |∆(E)| ∼ q whenever |E| ≥ Cq(d+1)/2. We recall that
A � B means that A ≤ CB for some constant C > 0, which is inde-
pendent of q, and we use A ∼ B if A� B and B � A. The authors in
[4] showed that the exponent (d+ 1)/2 is optimal for all odd dimensions
d ≥ 3 except for the cases when −1 is not a square and d = 4k − 1 for
k ∈ N. However, in any other cases including even dimensions d ≥ 2, it
has been conjectured by Iosevich and Rudnev [5] that in order to have
a positive proportion of all distances, the exponent (d + 1)/2 can be
improved to d/2.

Conjecture 1.1 (Iosevich-Rudnev’s Conjecture). Let E ⊆ Fdq . Sup-

pose that d ≥ 2 is even or d, q ≡ 3 mod 4. Then if |E| ≥ Cqd/2 for a
sufficiently large constant C > 0, we have |∆(E)| ∼ q.

Iosevich-Rudnev’s Conjecture is still open and even the threshold
(d+ 1)/2 has not been improved except for two dimensions. In the case
of d = 2 over general finite fields, the authors in [2] obtained the 4/3
exponent, which is the first result to break down the exponent (d+1)/2.
This result was obtained by applying the sharp restriction estimates for
the circles on the plane. More precisely, they proved the following result
with an explicit constant.

Theorem 1.2 ([2]). Let E be a subset of ⊂ F2
q with |E| ≥ q4/3. Then

following statements hold:

• If q ≡ 3 mod 4, then |∆(E)| ≥ q

1+
√

3
.

• If q ≡ 1 mod 4, then |∆(E)| ≥ Cqq, where the constant Cq is
defined by

Cq :=

(
1− 2q−1

)2
1 +
√

3−
√

3q−2/3
.

Notice that Cq > 0 for all q ≥ 3, and Cq converges to 1
1+
√

3
as q →∞.

Therefore, we see that there is a constant c > 0, independent of q, such
that Cq ≥ c > 0. From this observation, the following corollary is a
direct consequence of Theorem 1.2.

Corollary 1.3 ([2]). Suppose that E ⊆ F2
q with |E| ≥ q4/3. Then

we have

|∆(E)| ∼ q.

Using a group action approach, Bennett, Hart, Iosevich, Pakianathan,
and Rudnev [1] provided an alternative proof of the exponent 4/3 in the
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above corollary.

As a strong version of the Falconer distance problem, one has studied
the pinned distance problem over finite fields. Given E ⊆ Fdq , d ≥ 2,

and y ∈ Fdq , the pinned distance set with a pin y, denoted by ∆y(E), is
defined by

∆y(E) = {||x− y|| : x ∈ E}.
The Chapman, Erdog̃an, Hart, Iosevich, and Koh [2] showed that the
exponent (d+1)/2 due to Iosevich and Rudnev holds true for the pinned
distance sets. More precisely they proved the following.

Theorem 1.4 ([2]). Let E ⊆ Fdq , d ≥ 2. If |E| ≥ q
d+1
2 , then there

exists a subset E′ of E with |E′| ∼ |E| so that for every y ∈ E′, we have

|∆y(E)| ∼ q.

As seen in the conjecture of the Falconer distance set problem, the
exponent (d+1)/2 cannot be improved except for the cases when d, q ≡ 3
mod 4 or d ≥ 2 is even. However, in those cases it have been believed
that d/2 can be the best possible exponent for the pinned distance sets.
As partial evidence for this prediction, the 4/3 exponent result was ex-
tended to the pinned distance sets in F2

q by Hanson, Lund, and Roche-
Newton [3], who successfully performed the bisector energy estimate.

Theorem 1.5 ([3]). Let E ⊆ F2
q . If |E| ≥ q4/3, then the conclusion

of Theorem 1.4 holds.

When q is prime, the exponent 4/3 has been improved to 5/4 by
Murphy, Petridis, Pham, Rudnev, and Stevenson [6].

Theorem 1.6 ([6]). Let q be prime. Then if E ⊆ F2
q with |E| ≥ q

5
4 ,

we have

max
y∈E
|∆y(E)| ∼ q.

Despite researchers’ efforts, the conjectured exponent d/2 has not
been proven. This problem is unlikely to be solved with currently known
techniques. Moreover, there are only few evidences to support that the
conjecture is true.

The main purpose of this paper is not to derive an improved result
on the distance problem but to address that the possibility that random
sets satisfy the distance conjecture is very high.
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1.1. The statement of main results

Our main theorem is as follows.

Theorem 1.7. Suppose that E ⊆ Fdq , d ≥ 2, with |E| ≥ q. Then, for

any a > 1, there exists Y ⊆ Fdq with |Y | ≥ a−1
a qd so that for all y ∈ Y,

we have

|∆y(E)| ≥ q

2a
.

In the above theorem, the set Y depends on the set E and a > 0. Let
us fix a constant a > 0, independent of q. Then the following statements
can be considered.

• If E∩Y 6= φ and |E| = q, then the set E yields at least ∼ q pinned
distances.
• On the other hand, if E ∩ Y = φ and |E| = q, then Theorem

1.7 does not provide any information about the size of the pinned
distance set determined by the set E.

Here, a problem is that given a set E ⊂ Fdq with |E| = q, we do not

know if E ∩ Y = φ or not. However, for each y ∈ Fdq , we can expect
with at least 100(a− 1)/a% certainty that the set E∪{y} determines at
least q

2a distinct pinned distances with the pin y. For example, if we take
a = 100, then with at least 99% certainty we may claim that E ∩ {y}
for any y ∈ Fdq generates at least q/200 distinct pinned distances.

2. Proof of main result (Theorem 1.7)

To complete the proof, we will prove the following proposition which
clearly implies Theorem 1.7

Proposition 2.1. Let E ⊆ Fdq . Then given a > 1, there exists Y ⊆ Fdq
with |Y | ≥ a−1

a qd such that for all y ∈ Y ,

|∆y(E)| ≥ min

{
q

2a
,
|E|
2a

}
.

To prove this proposition, we begin with the standard counting ar-
gument as in [2].

To find a lower bound of the cardinality of the y-pinned distance set
∆y(E), we consider the y-pinned counting function νy : Fq → N ∪ {0},
which maps an element t in Fq to the number of elements x in E such
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that ||x− y|| = t. In other words, for y ∈ Fdq , t ∈ Fq, we have

νy(t) =
∑

x∈E:||x−y||=t

1.

Since |E|2 =
(∑

t∈∆y(E) νy(t)
)2
, it follows from the Cauchy-Schwarz

inequality that

(2.1) |∆y(E)| ≥ |E|2∑
t∈Fq

ν2
y(t)

.

Thus our problem is reduced to finding a good upper bound of the
quantity

∑
t∈Fq

ν2
y(t), which will be conducted in the following subsection

(see Lemma 2.3).

2.1. Key lemmas

The average of
∑

t∈Fq
ν2
y(t) over y in Fdq is explicitly given as follows:

Lemma 2.2. Let E ⊆ Fdq . Then we have

1

qd

∑
y∈Fd

q

∑
t∈Fq

ν2
y(t) =

|E|2

q
+
q − 1

q
|E|.

Proof. By the definition of the y-pinned counting function νy(t), we
have for each y ∈ Fq,∑

t∈Fq

ν2
y(t) =

∑
x,z∈E:||x−y||=||z−y||

1.

Hence, the average of it over y ∈ Fdq is given as follows:

1

qd

∑
y∈Fd

q

∑
t∈Fq

ν2
y(t) =

1

qd

∑
x,z∈E
:x=z

∑
y∈Fd

q

:||x−y||=||z−y||

1 +
1

qd

∑
x,z∈E
:x 6=z

∑
y∈Fd

q

:||x−y||=||z−y||

1

(2.2)

= |E|+ 1

qd

∑
x,z∈E
:x6=z

∑
y∈Fd

q

:||x−y||=||z−y||

1.

Now, we notice that for x, z ∈ E with x 6= z, we have

(2.3)
∑

y∈Fd
q :||x−y||=||z−y||

1 = qd−1.
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In fact, since x 6= z, the quantity
∑

y∈Fd
q :||x−y||=||z−y|| 1 is the number of

the elements in the hyper-plane which bisects the line segment joining x
and z. Alternatively we can prove this rigorously by using the finite field
Fourier analysis. To see this, let χ denote a nontrivial additive character
of Fq. Then, by the orthogonality of χ, we see that if x 6= z, then∑

y∈Fd
q :||x−y||=||z−y||

1 = q−1
∑
y∈Fd

q

∑
s∈Fq

χ(s(||x− y|| − ||z − y||))

= qd−1 + q−1
∑
y∈Fd

q

∑
s 6=0

χ(s(||x− y|| − ||z − y||)).

Applying the orthogonality of χ to the sum over y, we see that the
second term above is zero since the equation

χ(s(||x− y|| − ||z − y||)) = χ(−2s(x− z) · y)χ(s(||x|| − ||z||))

holds and s(x − z) is not a zero vector for s 6= 0, x 6= z. Hence, the
equation (2.3) holds.

Finally, combining the above two estimates (2.2), (2.3), we obtain the
desirable estimate.

The following result can be obtained by the pigeonhole principle to-
gether with Lemma 2.2.

Lemma 2.3. Let E ⊆ Fdq . Then for any a > 1, there exists Y ⊆ Fdq
with |Y | ≥ a−1

a qd such that for every y ∈ Y ,∑
t∈Fq

ν2
y(t) ≤ a

q
|E|2 +

a(q − 1)

q
|E|.

Proof. Let us fix a > 1. Define

Y =

y ∈ Fdq :
∑
t∈Fq

ν2
y(t) ≤ a

q
|E|2 +

a(q − 1)

q
|E|

 .

To complete the proof, it remains to show that

|Y | ≥ a− 1

a
qd.

By contradiction, let us assume that

(2.4) |Y | < a− 1

a
qd.
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It is clear that

(2.5) Fdq \ Y =

y ∈ Fdq :
∑
t∈Fq

ν2
y(t) >

a

q
|E|2 +

a(q − 1)

q
|E|

 .

We also notice that for all y ∈ Fdq ,

(2.6)
∑
t∈Fq

ν2
y(t) ≥

∑
t∈Fq

νy(t) = |E|.

Now by Lemma 2.2, it follows that

(2.7)
1

qd

∑
y∈Fd

q

∑
t∈Fq

ν2
y(t) =

|E|2

q
+
q − 1

q
|E|.

However, we can also estimate it as follows. Using (2.5) and (2.6), we
have

1

qd

∑
y∈Fd

q

∑
t∈Fq

ν2
y(t)

=
1

qd

∑
y∈Y

∑
t∈Fq

ν2
y(t) +

1

qd

∑
y∈Fd

q\Y

∑
t∈Fq

ν2
y(t)

>
1

qd
|Y ||E|+ 1

qd
(qd − |Y |)

(
a

q
|E|2 +

a(q − 1)

q
|E|
)

=
a|E|2

q
+
a(q − 1)|E|

q
+

(
|E|
qd
− a|E|2

qd+1
− a(q − 1)|E|

qd+1

)
|Y |.

Since a > 1, in the third term above, the coefficient of |Y | is negative.
Hence, we can combine the above estimate with (2.4) to deduce that

1

qd

∑
y∈Fd

q

∑
t∈Fq

ν2
y(t) >

a|E|2

q
+
a(q − 1)|E|

q

+

(
|E|
qd
− a|E|2

qd+1
− a(q − 1)|E|

qd+1

)(
a− 1

a
qd
)

Simplifying the RHS of the above estimate, we get

1

qd

∑
y∈Fd

q

∑
t∈Fq

ν2
y(t) >

|E|2

q
+
q − 1

q
|E|+ a− 1

a
|E|,

which contradicts the equation (2.7) since a > 1.
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2.2. Proof of Proposition 2.1

Combining (2.1) and Lemma 2.3, we get the required result:

|∆y(E)| ≥ |E|2
a
q |E|2 + a(q−1)

q |E|
≥ min

{
q

2a
,

q|E|
2a(q − 1)

}
≥ min

{
q

2a
,
|E|
2a

}
.
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