DOI QR코드

DOI QR Code

Does Fracture Severity of Intertrochanteric Fracture in Elderly Caused by Low-Energy Trauma Affected by Gluteus Muscle Volume?

  • Byung-Kook Kim (Department of Orthopaedic Surgery, CHA Gumi Medical Center, CHA University School of Medicine) ;
  • Suk Han Jung (Department of Orthopaedic Surgery, CHA Gumi Medical Center, CHA University School of Medicine) ;
  • Donghun Han (Department of Orthopaedic Surgery, CHA Gumi Medical Center, CHA University School of Medicine)
  • 투고 : 2021.10.22
  • 심사 : 2022.01.10
  • 발행 : 2022.03.31

초록

Purpose: The aim of this study was to determine whether there is a correlation between the type and stability of intertrochanteric fractures caused by low-energy trauma and gluteus muscle volume. Materials and Methods: A total of 205 elderly (>65 years) patients with intertrochanteric fractures caused by low-energy trauma treated from January 2018 to December 2020 were included in this study. The mean age of patients was 81.24 years (range, 65-100 years). Fractures were classified according to the Jensen modification of the Evans classification. The cross-sectional area of the contralateral gluteus muscle (minimus, medius, and maximus) was measured in preoperative axial computed tomography slices. An analysis and comparison of age, body mass index (BMI), weight, height, and the gluteus muscle area in each fracture type group was performed. Results: In the uni-variable analysis, statistically significant taller height was observed in patients in the stable intertrochanteric fracture (modified Evans 1 and 2) group compared with those in the unstable intertrochanteric fracture (modified Evans 3, 4, and 5) group (P<0.05). In addition, significantly higher BMI-adjusted gluteus muscle area (gluteus muscle area/BMI) was observed for the stable intertrochanteric fracture group compared with the unstable intertrochanteric fracture group except for the BMI-adjusted gluteus minimus area (P=0.112). In multivariable analysis, only the BMI-adjusted gluteus maximus (P=0.042) and total gluteus areas (P=0.035) were significantly higher in the stable group. Conclusion: Gluteal muscularity around the hip, especially the gluteus maximus, had a significant effect on the stability of intertrochanteric fractures.

키워드

참고문헌

  1. Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporos Int. 2005;16 Suppl 2:S3-7.
  2. Schnell S, Friedman SM, Mendelson DA, Bingham KW, Kates SL. The 1-year mortality of patients treated in a hip fracture program for elders. Geriatr Orthop Surg Rehabil. 2010;1:6-14.
  3. Palm H, Jacobsen S, Sonne-Holm S, Gebuhr P; Hip Fracture Study Group. Integrity of the lateral femoral wall in intertrochanteric hip fractures: an important predictor of a reoperation. J Bone Joint Surg Am. 2007;89:470-5.
  4. Yoo J, Chang J, Park C, Hwang J. Risk factors associated with failure of cephalomedullary nail fixation in the treatment of trochanteric hip fractures. Clin Orthop Surg. 2020;12:29-36.
  5. Pires RE, Santana EO Jr, Santos LE, Giordano V, Balbachevsky D, Dos Reis FB. Failure of fixation of trochanteric femur fractures: clinical recommendations for avoiding Z-effect and reverse Z-effect type complications. Patient Saf Surg. 2011;5:17.
  6. Park SY, Yang KH, Yoo JH, Yoon HK, Park HW. The treatment of reverse obliquity intertrochanteric fractures with the intramedullary hip nail. J Trauma. 2008;65:852-7.
  7. Li Y, Lin J, Cai S, et al. Influence of bone mineral density and hip geometry on the different types of hip fracture. Bosn J Basic Med Sci. 2016;16:35-8.
  8. Johnell O, Kanis JA, Oden A, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20:1185-94.
  9. Chen PH, Wu CC, Chen WJ. Factors affect stability of intertrochanteric fractures when elderly patients fall. Biomed J. 2016;39:67-71.
  10. Jensen JS, Michaelsen M. Trochanteric femoral fractures treated with McLaughlin osteosynthesis. Acta Orthop Scand. 1975;46:795-803.
  11. Kanis JA, Borgstrom F, De Laet C, et al. Assessment of fracture risk. Osteoporos Int. 2005;16:581-9.
  12. Chang KP, Center JR, Nguyen TV, Eisman JA. Incidence of hip and other osteoporotic fractures in elderly men and women: Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res. 2004;19:532-6.
  13. Kim MH, Yoo MJ, Seo JB, Yoo HY, Moon SY. Comparison of bone mineral density in elderly patients over 65 years according to presence and types of hip fracture. J Korean Fract Soc. 2010;23:263-9.
  14. Cefalu CA. Is bone mineral density predictive of fracture risk reduction? Curr Med Res Opin. 2004;20:341-9.
  15. Black DM, Bauer DC, Vittinghoff E, et al. Treatment-related changes in bone mineral density as a surrogate biomarker for fracture risk reduction: meta-regression analyses of individual patient data from multiple randomised controlled trials. Lancet Diabetes Endocrinol. 2020;8:672-82.
  16. Fonseca H, Moreira-Gon-alves D, Coriolano HJ, Duarte JA. Bone quality: the determinants of bone strength and fragility. Sports Med. 2014;44:37-53.
  17. Leslie WD, Morin SN, Lix LM; Manitoba Bone Density Program. Rate of bone density change does not enhance fracture prediction in routine clinical practice. J Clin Endocrinol Metab. 2012;97:1211-8.
  18. Bouxsein ML, Szulc P, Munoz F, Thrall E, Sornay-Rendu E, Delmas PD. Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. J Bone Miner Res. 2007;22:825-31.
  19. Majumder S, Roychowdhury A, Pal S. Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations. J Biomech. 2008;41:2834-42.
  20. Majumder S, Roychowdhury A, Pal S. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body. Med Eng Phys. 2007;29:1167-78.
  21. Feldman F, Robinovitch SN. Reducing hip fracture risk during sideways falls: evidence in young adults of the protective effects of impact to the hands and stepping. J Biomech. 2007;40:2612-8.
  22. de Bakker PM, Manske SL, Ebacher V, Oxland TR, Cripton PA, Guy P. During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures. J Biomech. 2009;42:1917-25.
  23. Keyak JH, Skinner HB, Fleming JA. Effect of force direction on femoral fracture load for two types of loading conditions. J Orthop Res. 2001;19:539-44.
  24. Ford CM, Keaveny TM, Hayes WC. The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res. 1996;11:377-83.
  25. Opotowsky AR, Su BW, Bilezikian JP. Height and lower extremity length as predictors of hip fracture: results of the NHANES I Epidemiologic Follow-up Study. J Bone Miner Res. 2003;18:1674-81.
  26. Palermo A, Tuccinardi D, Defeudis G, et al. BMI and BMD: the potential interplay between obesity and bone fragility. Int J Environ Res Public Health. 2016;13:544.
  27. Chan MY, Frost SA, Center JR, Eisman JA, Nguyen TV. Relationship between body mass index and fracture risk is mediated by bone mineral density. J Bone Miner Res. 2014;29:2327-35.
  28. Lotz JC, Hayes WC. The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg Am. 1990;72:689-700.
  29. Teo I, Thompson J, Neo YN, Lundie S, Munnoch DA. Lower limb dominance and volume in healthy individuals. Lymphology. 2017;50:197-202.