과제정보
This research was funded by the National Research Council of Thailand (NRCT; N42A640330), Chulalongkorn University (CU-GRS-64), and Chulalongkorn University (CU-GRS-62-02-30-01) and supported by the Center of Excellence in Gastrointestinal Oncology, Chulalongkorn University annual grant. It was also funded by the University Technology Center (UTC) at Chulalongkorn University.
참고문헌
- Fox JG, Wang TC. Inflammation, atrophy, and gastric cancer. J Clin Invest 2007;117:60-69. https://doi.org/10.1172/JCI30111
- Lim JH, Kim N, Lee HS, et al. Correlation between endoscopic and histological diagnoses of gastric intestinal metaplasia. Gut Liver 2013;7:41-50. https://doi.org/10.5009/gnl.2013.7.1.41
- Panteris V, Nikolopoulou S, Lountou A, et al. Diagnostic capabilities of high-definition white light endoscopy for the diagnosis of gastric intestinal metaplasia and correlation with histologic and clinical data. Eur J Gastroenterol Hepatol 2014;26:594-601. https://doi.org/10.1097/MEG.0000000000000097
- Dixon MF, Genta RM, Yardley JH, et al. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol 1996;20:1161-1181. https://doi.org/10.1097/00000478-199610000-00001
- Ang TL, Pittayanon R, Lau JY, et al. A multicenter randomized comparison between high-definition white light endoscopy and narrow band imaging for detection of gastric lesions. Eur J Gastroenterol Hepatol 2015;27:1473-1478. https://doi.org/10.1097/MEG.0000000000000478
- Wu C, Namasivayam V, Li JW, et al. A prospective randomized tandem gastroscopy pilot study of linked color imaging versus white light imaging for detection of upper gastrointestinal lesions. J Gastroenterol Hepatol 2021;36:2562-2567. https://doi.org/10.1111/jgh.15515
- Savarino E, Corbo M, Dulbecco P, et al. Narrow-band imaging with magnifying endoscopy is accurate for detecting gastric intestinal metaplasia. World J Gastroenterol 2013;19:2668-2675. https://doi.org/10.3748/wjg.v19.i17.2668
- Pittayanon R, Rerknimitr R, Wisedopas N, et al. The learning curve of gastric intestinal metaplasia interpretation on the images obtained by probe-based confocal laser endomicroscopy. Diagn Ther Endosc 2012;2012:278045.
- Sun M, Zhang G, Dang H, et al. Accurate gastric cancer segmentation in digital pathology images using deformable convolution and multi-scale embedding networks. IEEE Access 2019;7:75530-75541. https://doi.org/10.1109/ACCESS.2019.2918800
- Li Y, Xie X, Liu S, et al. GT-Net: a deep learning network for gastric tumor diagnosis. In: 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI); 2018 Nov 5-7; Volos, Greece. p. 20-24.
- Chen LC, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Computer Vision (ECCV 2018); p. 833-851.
- Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015). p. 234-241.
- Read P, Meyer MP. Restoration of motion picture film. Oxford: Butterworth-Heinemann; 2000.
- Rodriguez-Diaz E, Baffy G, Lo WK, et al. Real-time artificial intelligence-based histologic classification of colorectal polyps with augmented visualization. Gastrointest Endosc 2021;93:662-670. https://doi.org/10.1016/j.gie.2020.09.018
- Wang C, Li Y, Yao J, et al. Localizing and identifying intestinal metaplasia based on deep learning in oesophagoscope. In: 2019 8th International Symposium on Next Generation Electronics (ISNE); 2019 Oct 9-10; Zhengzhou, China. p. 1-4.
- Sun X, Zhang P, Wang D, et al. Colorectal polyp segmentation by U-Net with dilation convolution. In: 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA); 2019 Dec 16-19; Boca Raton, FL. p. 851-858.
- Yosinski J, Clune J, Bengio Y, et al. How transferable are features in deep neural networks? In: NIPS 14: Proceedings of the 27th International Conference on Neural Information Processing Systems; 2014 Dec 8-13; Montreal, Canada. p. 3320-3328.
- Russell BC, Torralba A, Murphy KP, et al. LabelMe: a database and web-based tool for image annotation. Int J Comput Vis 2008;77:157-173. https://doi.org/10.1007/s11263-007-0090-8
- Bernal J, Sanchez FJ, Fernandez-Esparrach G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput Med Imaging Graph 2015;43:99-111. https://doi.org/10.1016/j.compmedimag.2015.02.007
- Jha D, Smedsrud PH, Riegler MA, et al. Kvasir-SEG: a segmented polyp dataset. In: MultiMedia Modeling: 26th International Conference, MMM 2020; 2020 Jan 5-8; Daejeon, Korea. p. 451-462.
- Zuiderveld K. Contrast limited adaptive histogram equalization. In: Heckbert PS, editor. Graphics gems IV. San Diego (CA): Academic Press; 1994. p. 474-485.
- Yu C, Wang J, Peng C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Computer Vision-ECCV 2018; p. 334-349.
- Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE 1998;86:2278-2324. https://doi.org/10.1109/5.726791
- Goncalves W, Dos Santos M, Lobato F, et al. Deep learning in gastric tissue diseases: a systematic review. BMJ Open Gastroenterol 2020;7:e000371.
- Mori Y, Neumann H, Misawa M, et al. Artificial intelligence in colonoscopy: now on the market. What's next? J Gastroenterol Hepatol 2021;36:7-11. https://doi.org/10.1111/jgh.15339
- Hirasawa T, Aoyama K, Tanimoto T, et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 2018;21:653-660. https://doi.org/10.1007/s10120-018-0793-2
- Li L, Chen Y, Shen Z, et al. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer 2020;23:126-132. https://doi.org/10.1007/s10120-019-00992-2
- Zhang L, Zhang Y, Wang L, et al. Diagnosis of gastric lesions through a deep convolutional neural network. Dig Endosc 2021;33:788-796. https://doi.org/10.1111/den.13844
- Suzuki H, Yoshitaka T, Yoshio T, et al. Artificial intelligence for cancer detection of the upper gastrointestinal tract. Dig Endosc 2021;33:254-262. https://doi.org/10.1111/den.13897
- Xu M, Zhou W, Wu L, et al. Artificial intelligence in the diagnosis of gastric precancerous conditions by image-enhanced endoscopy: a multicenter, diagnostic study (with video). Gastrointest Endosc 2021;94:540-548. https://doi.org/10.1016/j.gie.2021.03.013
- He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, NV. p. 770-778.
- Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: 2015 International Conference on Learning Representations (ICLR); 2015 May 7-9; San Diego, CA.
- Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, HI. p. 2261-2269.
- Tan M, Le QV. EfficientNet: rethinking model scaling for convolutional neural networks. In: 36th International Conference on Machine Learning (ICML 2019); 2019 Jun 9-15; Long Beach, CA. p. 6105-6114.
- ASGE Technology Committee, Abu Dayyeh BK, Thosani N, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc 2015;81:502. e1-502.e16. https://doi.org/10.1016/j.gie.2014.12.022
- Banks M, Graham D, Jansen M, et al. British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma. Gut 2019;68:1545-1575. https://doi.org/10.1136/gutjnl-2018-318126