DOI QR코드

DOI QR Code

Translocator Protein (18 kDa) Polymorphism (rs6971) in the Korean Population

  • Hyon Lee (Department of Neurology, Gil Medical Center, Gachon University College of Medicine) ;
  • Young Noh (Department of Neurology, Gil Medical Center, Gachon University College of Medicine) ;
  • Woo Ram Kim (Neuroscience Research Institute, Gachon University) ;
  • Ha-Eun Seo (Neuroscience Research Institute, Gachon University) ;
  • Hyeon-Mi Park (Department of Neurology, Gil Medical Center, Gachon University College of Medicine)
  • 투고 : 2022.04.19
  • 심사 : 2022.04.25
  • 발행 : 2022.04.30

초록

Background and Purpose: The expression of the 18-kDA mitochondrial translocator protein (TSPO) in the brain is an attractive target to study neuroinflammation. However, the binding properties of TSPO ligands are reportedly dependent on genetic polymorphism of the TSPO gene (rs6971). The objective of this study is to investigate the rs6971 gene polymorphism in the Korean population. Methods: We performed genetic testing on 109 subjects including patients with mild cognitive impairment, Alzheimer's disease (AD) dementia, non-AD dementia, and cognitively unimpaired participants. Magnetic resonance imaging scans and detailed neuropsychological tests were also performed, and 29 participants underwent 18F-DPA714 PET scans. Exon 4 of the TSPO gene containing the polymorphism rs6971 (Ala or Thr at position 147) was polymerase chain reaction amplified and sequenced using the Sanger method. The identified rs6971 genotype codes (C/C, C/T, or T/T) of the TSPO protein generated high-, mixed-, or low-affinity binding phenotypes (HABs, MABs, and LABs), respectively. Results: We found that 96.3% of the study subjects were HAB (105 out of 109 subjects), and 3.7% of the subjects were MAB (4 out of 109 subjects). 18F-DPA-714 PET scans showed nonspecific binding to the thalamus and brainstem, and increased tracer uptake throughout the cortex in cognitively impaired patients. The participant with the MAB polymorphism had a higher DPA714 signal throughout the cortex. Conclusions: The majority of Koreans are HAB (aprox. 96%). Therefore, the polymorphism of the rs6971 gene would have a smaller impact on the availability of second-generation TSPO PET tracers.

키워드

과제정보

This study was supported by a grant of the Korea Healthcare Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant No: HI14C1135).

참고문헌

  1. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol 2015;14:388-405.
  2. Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 2013;14:812-820. 
  3. Hagens MH, Golla SV, Wijburg MT, Yaqub M, Heijtel D, Steenwijk MD, et al. In vivo assessment of neuroinflammation in progressive multiple sclerosis: a proof of concept study with [18F]DPA714 PET. J Neuroinflammation 2018;15:314. 
  4. Owen DR, Matthews PM. Imaging brain microglial activation using positron emission tomography and translocator protein-specific radioligands. Int Rev Neurobiol 2011;101:19-39. 
  5. Gulyas B, Toth M, Vas A, Shchukin E, Kostulas K, Hillert J, et al. Visualising neuroinflammation in poststroke patients: a comparative PET study with the TSPO molecular imaging biomarkers [11C]PK11195 and [11C]vinpocetine. Curr Radiopharm 2012;5:19-28. 
  6. Gavish M, Bachman I, Shoukrun R, Katz Y, Veenman L, Weisinger G, et al. Enigma of the peripheral benzodiazepine receptor. Pharmacol Rev 1999.51:629-650. PUBMED
  7. Alam MM, Lee J, Lee SY. Recent progress in the development of TSPO PET ligands for neuroinflammation imaging in neurological diseases. Nucl Med Mol Imaging 2017;51:283-296. 
  8. Vivash L, O'Brien TJ. Imaging microglial activation with TSPO PET: lighting up neurologic diseases? J Nucl Med 2016;57:165-168. 
  9. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 2012;32:1-5. 
  10. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-944. 
  11. Petersen RC. Clinical practice. Mild cognitive impairment. N Engl J Med 2011;364:2227-2234. 
  12. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011;134:2456-2477. 
  13. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 2017;89:88-100. 
  14. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008;71:670-676. 
  15. McKee AC, Cairns NJ, Dickson DW, Folkerth RD, Keene CD, Litvan I, et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 2016;131:75-86. 
  16. Greve DN, Svarer C, Fisher PM, Feng L, Hansen AE, Baare W, et al. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data. Neuroimage 2014;92:225-236. 
  17. Greve DN, Salat DH, Bowen SL, Izquierdo-Garcia D, Schultz AP, Catana C, et al. Different partial volume correction methods lead to different conclusions: An (18)F-FDG-PET study of aging. Neuroimage 2016;132:334-343. 
  18. Kang JM, Lee SY, Seo S, Jeong HJ, Woo SH, Lee H, et al. Tau positron emission tomography using [18F] THK5351 and cerebral glucose hypometabolism in Alzheimer's disease. Neurobiol Aging 2017;59:210-219. 
  19. Owen DR, Fan J, Campioli E, Venugopal S, Midzak A, Daly E, et al. TSPO mutations in rats and a human polymorphism impair the rate of steroid synthesis. Biochem J 2017;474:3985-3999.
  20. Turkheimer FE, Rizzo G, Bloomfield PS, Howes O, Zanotti-Fregonara P, Bertoldo A, et al. The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans 2015;43:586-592. 
  21. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001;29:308-311. 
  22. International HapMap Consortium. The International HapMap Project. Nature 2003;426:789-796. 
  23. Hamelin L, Lagarde J, Dorothee G, Leroy C, Labit M, Comley RA, et al. Early and protective microglial activation in Alzheimer's disease: a prospective study using 18F-DPA-714 PET imaging. Brain 2016;139:1252-1264. 
  24. Kreisl WC, Jenko KJ, Hines CS, Lyoo CH, Corona W, Morse CL, et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab 2013;33:53-58. 
  25. Kim SW, Wiers CE, Tyler R, Shokri-Kojori E, Jang YJ, Zehra A, et al. Influence of alcoholism and cholesterol on TSPO binding in brain: PET [11C]PBR28 studies in humans and rodents. Neuropsychopharmacology 2018;43:1832-1839. 
  26. Mizrahi R, Rusjan PM, Kennedy J, Pollock B, Mulsant B, Suridjan I, et al. Translocator protein (18 kDa) polymorphism (rs6971) explains in-vivo brain binding affinity of the PET radioligand [(18)F]-FEPPA. J Cereb Blood Flow Metab 2012;32:968-972.