DOI QR코드

DOI QR Code

Consumer Acceptance Intention of AI Fashion Chatbot Service -Focusing on Characteristics of Chatbot's Para-social Presence-

AI 기반 패션 챗봇 서비스에 대한 소비자 수용의도 -챗봇의 준사회적 실재감 특성을 중심으로-

  • Hur, Hee Jin (Dept. of Fashion Design & Business, Daejeon University) ;
  • Kim, Woo Bin (Dept. of Textiles, Merchandising and Fashion Design, Seoul National University)
  • 허희진 (대전대학교 패션디자인.비즈니스학과) ;
  • 김우빈 (서울대학교 의류학과)
  • Received : 2022.01.03
  • Accepted : 2022.03.17
  • Published : 2022.06.30

Abstract

With the steady development of Artificial Intelligence (AI), online stores are adopting chatbot services as virtual shopping assistants. This study proposes the concept of para-social presence to explore the undiscovered role of fashion chatbots' emotional and relational characteristics on service acceptance. Based on the Technology Acceptance Model (TAM), this study investigates the effect of a chatbot's para-social presence on service acceptance intention through consumers' beliefs. The web-based experiment was conducted on adult consumers who experienced chatbot services in an online shopping situation. A total of 247 responses were analyzed using confirmatory factor analysis, structural equation modeling, and multi-group SEM by AMOS 21.0 and SPSS 23.0. The findings illustrate that the chatbot's intimacy positively influenced consumers' perceived enjoyment, while the chatbot's understanding had a significant effect on perceived usefulness and ease of use. The chatbot's involvement had a positive effect on all consumer beliefs. Moreover, perceived ease of use had a positive influence on usefulness. A greater level of perceived usefulness and enjoyment positively heightened consumers' service acceptance intention. This study also verifies the moderating role of a need for human interaction. Consumers with a high need for human interaction have a relatively low tendency to perceive chatbot services as useful.

Keywords

References

  1. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. doi:10.1016/0749-5978(91)90020-T
  2. Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall.
  3. Anselmsson, J. (2001). Customer-perceived service-quality and technology-based self-service. Lund: Lund Business Press.
  4. Bhattacherjee, A. (2001). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201-214. doi:10.1016/S0167-9236(01)00111-7
  5. Bickmore, T. W., & Picard, R. W. (2005). Establishing and maintaining long-term human-computer relationships. ACM Transactions on Computer-Human Interaction, 12(2), 293-327. doi:10.1145/1067860.1067867
  6. Biocca, F., & Delaney, B. (1995). Immersive virtual reality technology. In F. Biocca, & M. Levy (Eds.), Communication in the age of virtual reality (pp. 57-124). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
  7. Burke, K., & Chidambaram, L. (1999). How much bandwidth is enough? A longitudinal examination of media characteristics and group outcomes. MIS Quarterly, 23(4), 557-579. doi:10.2307/249489
  8. Caplan, S. E., & Turner, J. S. (2007). Bringing theory to research on computer-mediated comforting communication. Computers in Human Behavior, 23(2), 985-998. doi:10.1016/j.chb.2005.08.003
  9. Chung, J. H. (2016, November 30). 챗봇 서비스의 향후 전망과 사회경제적 영향 분석 [Analysis of the future prospects and socioeconomic impacts of the chatbot service]. Insight Report 2016-25. Retrieved from https://ksp.etri.re.kr/ksp/planreport/read?id=111
  10. Dabholkar, P. A. (1996). Consumer evaluations of new technology-based self-service options: An investigation of alternative models of service quality. International Journal of Research in Marketing, 13(1), 29-51. doi:10.1016/0167-8116(95)00027-5
  11. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. doi:10.2307/249008
  12. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. doi:10.1287/mnsc.35.8.982
  13. Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382-388. doi:10.1177/002224378101800313
  14. Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 28(6), 725-737. doi:10.1016/S0305-0483(00)00021-9
  15. Green, M. C., & Brock, T. C. (2000). The role of transportation in the persuasiveness of public narratives. Journal of Personality and Social Psychology, 79(5), 701-721. doi:10.1037/0022-3514.79.5.701
  16. Ha, Y. J., & Hwang, S. J. (2021). The effect of anthropomorphism level of the shopping chatbot, message type, and media self-efficacy on purchase intention. Journal of Fashion Business, 25(4), 79-91. doi:10.12940/jfb.2021.25.4.79
  17. Han, H. (2019). Influencing factors on purchase intention for smart healthcare clothing by gender and age - Focused on TAM, clothing attributes, health-lifestyle, and fashion innovativeness -. The Research Journal of the Costume Culture, 27(6), 615-631. doi:10.29049/rjcc.2019.27.6.615
  18. Hashim, K. F., & Tan, F. B. (2015). The mediating role of trust and commitment on members' continuous knowledge sharing intention: A commitment-trust theory perspective. International Journal of Information Management, 35(2), 145-151. doi:10.1016/j.ijinfomgt.2014.11.001
  19. Hur, H. J., Jang, J. Y., & Choo, H. J. (2019). The effect of VR fashion shopping channel characteristics and consumer's involvement in channel acceptance-Focusing on the vividness, interactivity and fashion involvement-. Journal of the Korean Society of Clothing and Textiles, 43(5), 725-741. doi:10.5850/JKSCT.2019.43.5.725
  20. Hur, H. J., & Lee, H. K. (2021). Augmented reality (AR) fashion shopping service acceptance based on consumers' technology readiness. Fashion & Textile Research Journal, 23(3), 347-357. doi:10.5805/SFTI.2021.23.3.347
  21. Jeong, H. S., & Kim, Y. I. (2019). The effect of chatbot quality on chatbot trust and brand trust. Journal of the Korean Society of Costume, 69(3), 1-14. doi:10.7233/jksc.2019.69.3.001
  22. Jeong, S. G., Hur, H. J., & Choo, H. J. (2020). The effect of fashion shopping chatbot characteristics on service acceptance intention-Focusing on anthropomorphism and personalization-. Journal of the Korean Society of Clothing and Textiles, 44(4), 573-593. doi:10.5850/JKSCT.2020.44.4.573
  23. Jin, D.-s. (2021). Research on success and failure of AI chatbot. Journal of Next-generation Convergence Technology Association, 5(2), 168-175. doi:10.33097/JNCTA.2021.05.02.168
  24. Ki, C.-W. (C.), Cho, E., & Lee, J.-E. (2020). Can an intelligent personal assistant (IPA) be your friend? Para-friendship development mechanism between IPAs and their users. Computers in Human Behavior, 111:106412. doi:10.1016/j.chb.2020.106412
  25. King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740-755. doi:10.1016/j.im.2006.05.003
  26. Kim, T. H., Lee, H. Y., Namkoong, H., Choi, S. Y., & Yang, H. (2020). Effect of perceived technological innovativeness on revisit and word-of-mouth intention in augmented reality store-Focusing on curiosity and fun-. Journal of the Korean Society of Clothing and Textiles, 44(4), 676-690. doi:10.5850/JKSCT.2020.44.4.676
  27. Kim, Y., & Wei, Q. (2011). The impact of learner attributes and learner choice in an agent-based environment. Computers & Education, 56(2), 505-514. doi.:10.1016/j.compedu.2010.09.016
  28. Kopp, S., Gesellensetter, L., Kramer, N. C., & Wachsmuth, I. (2005). A conversational agent as museum guide - Design and evaluation of a real-world application. In T. Panayiotopoulos, J. Gratch, R. Aylett, D. Ballin, P. Olivier, & T. Rist (Eds.), Intelligent virtual agents: 5th International Working Conference, IVA 2005, Kos, Greece, September 12-14, 2005, Proceedings (pp. 329-343). Berlin and Heidelberg: Springer. doi:10.1007/11550617_28
  29. Kumar, N., & Benbasat, I. (2002). Para-social presence and communication capabilities of a web site: A theoretical perspective. e-Service Journal, 1(3), 5-24. doi:10.2979/esj.2002.1.3.5
  30. Lackenbauer, S. D., Campbell, L., Rubin, H., Fletcher, G. J. O., & Troister, T. (2010). The unique and combined benefits of accuracy and positive bias in relationships. Personal Relationships, 17(3), 475-493. doi:10.1111/j.1475-6811.2010.01282.x
  31. Lee, H., & Leonas, K. K. (2021). Millennials' intention to use self-checkout technology in different fashion retail formats: Perceived benefits and risks. Clothing and Textiles Research Journal, 39(4), 264-280. doi:10.1177/0887302X20926577
  32. Lee, H.-J., & Lyu, J. (2016). Personal values as determinants of intentions to use self-service technology in retailing. Computers in Human Behavior, 60, 322-332. doi:10.1016/j.chb.2016.02.051
  33. Lee, K.-K., & Noh, Y. (2009). Exploring factors affecting the mobile payment - Focus on factors related to risk and trust -. The e-Business Studies, 10(3), 281-301. doi:10.15719/geba.10.3.200909.281
  34. Lee, K. M., Peng, W., Jin, S.-A., & Yan, C. (2006). Can robots manifest personality?: An empirical test of personality recognition, social responses, and social presence in humanrobot interaction. Journal of Communication, 56(4), 754-772. doi:10.1111/j.1460-2466.2006.00318.x
  35. Li, D., Browne, G. J., & Wetherbe, J. C. (2006). Why do internet users stick with a specific Web site? A relationship perspective. International Journal of Electronic Commerce, 10(4), 105-141. doi:10.2753/JEC1086-4415100404
  36. Lombard, M., & Snyder-Duch, J. (2001). Interactive advertising and presence: A framework. Journal of Interactive Advertising, 1(2), 56-65. doi:10.1080/15252019.2001.10722051
  37. McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa ... examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28-37. doi:10.1016/j.chb.2019.05.009
  38. Meuter, M. L., Ostrom, A. L., Bitner, M. J., & Roundtree, R. (2003). The influence of technology anxiety on consumer use and experiences with self-service technologies. Journal of Business Research, 56(11), 899-906. doi:10.1016/S0148-2963(01)00276-4
  39. Moon, Y. (2000). Intimate exchanges: Using computers to elicit self-disclosure from consumers. Journal of Consumer Research, 26(4), 323-339. doi:10.1086/209566
  40. Moon, J.-W., & Kim, Y.-G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217-230. doi:10.1016/S0378-7206(00)00061-6
  41. Moriuchi, E. (2019). Okay, Google!: An empirical study on voice assistants on consumer engagement and loyalty. Psychology & Marketing, 36(5), 489-501. doi:10.1002/mar.21192
  42. Munn, N. J. (2012). The reality of friendship within immersive virtual worlds. Ethics and Information Technology, 14(1), 1-10. doi:10.1007/s10676-011-9274-6
  43. Nass, C., & Moon, Y. (2000). Machines and mindlessness: Social responses to computers. Journal of Social Issues, 56(1), 81-103. doi:10.1111/0022-4537.00153
  44. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York, NY: McGraw-Hill.
  45. Perea y Monsuwe, T., Dallaert, B. G. C., & de Ruyter, K. (2004). What drives consumers to shop online? A literature review. International Journal of Service Industry Management, 15(1), 102-121. doi:10.1108/09564230410523358
  46. Rhee, C. E., & Choi, J. (2020). Effects of personalization and social role in voice shopping: An experimental study on product recommendation by a conversational voice agent. Computers in Human Behavior, 109:106359. doi:10.1016/j.chb.2020.106359
  47. Segars, A. H., & Grover, V. (1993). Re-examining perceived ease of use and usefulness: A confirmatory factor analysis. MIS Quarterly, 17(4), 517-525. doi:10.2307/249590
  48. Sheehan, B., Jin, H. S., & Gottlieb, U. (2020). Customer service chatbots: Anthropomorphism and adoption. Journal of Business Research, 115, 14-24. doi:10.1016/j.jbusres.2020.04.030
  49. Shi, Z. (2011). Advanced artificial intelligence. Singapore: World Scientific.
  50. Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information System Research, 11(4), 342-365. doi:10.1287/isre.11.4.342.11872
  51. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. doi:10.1287/mnsc.46.2.186.11926
  52. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. doi:10.2307/30036540
  53. Wang, L. C., Baker, J., Wagner, J. A., & Wakefield, K. (2007). Can a retail Web site be social? Journal of Marketing, 71(3), 143-157. doi:10.1509/jmkg.71.3.143
  54. Yang, H., Lee, H., & Zo, H. (2017). User acceptance of smart home services: an extension of the theory of planned behavior. Industrial Management & Data Systems, 117(1), 68-89. doi:10.1108/IMDS-01-2016-0017
  55. Yang, S., Carlson, J. R., & Chen, S. (2020). How augmented reality affects advertising effectiveness: The mediating effects of curiosity and attention toward the ad. Journal of Retailing and Consumer Services, 54:102020. doi:10.1016/j.jretconser.2019.102020
  56. Yoo, Y., & Alavi, M. (2001). Media and group cohesion: Relative influences on social presence, task participation, and group consensus. MIS Quarterly, 25(3), 371-390. doi:10.2307/3250922