References
- Adali, S. (2008), "Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory", Phys. Lett. A., 372, 5701-5705. https://doi.org/10.1016/j.physleta.2008.07.003.
- Aifantis, E.C. (1999), "Strain gradient interpretation of size effects", Int. J. Fract., 95, 299-314. https://doi.org/10.1023/A:1018625006804.
- Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
- Al-Furjan, M.S.H., Dehini, R., Khorami, M., Habibi, M. and Jung, D.W. (2020), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 255, 112990. https://doi.org/10.1016/j.compstruct.2020.112990.
- Alizadeh-Hamidi, B., Hassannejad, R. and Omidi, Y. (2021), "Size-dependent thermos-mechanical vibration of lipid supramolecular nano-tubules via nonlocal strain gradient Timoshenko beam theory", Comput. Biol. Med., 134, 104475. https://doi: 10.1016/j.compbiomed.2021.104475.
- Allen, M.P. (2004), "Introduction to molecular dynamics simulation", Comput. Soft Matter, 23, 1-28.
- Andrews, R. and Weisenberger, M.C. (2004), "Carbon nanotube polymer composites", Curr. Opin. Solid State Mater. Sci., 8(1), 31-37. https://doi.org/10.1016/j.cossms.2003.10.006.
- Ansari, R., Sahmani, S. and Rouhi, H. (2011), "Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh-Ritz technique", Comput. Mater. Sci., 50, 3050-3055. https://doi.org/10.1016/j.commatsci.2011.05.027.
- Arda, M. and Aydogdu, M. (2015), "Analysis of free torsional vibration in carbon nanotubes embedded in a viscoelastic medium", Adv. Sci. Technol. Res. J., 9(26), 28-33, https://doi.org/10.12913/22998624/2361.
- Arda, M. and Aydogdu, M. (2019), "Torsional dynamics of coaxial nanotubes with different lengths in viscoelastic medium", Microsyst. Technol., 25, 3943-3957. https://doi.org/10.1007/s00542-019-04446-8.
- Aydogdu, M. (2009), "Axial vibration of nanorods with the nonlocal continuum rod model", Physica E, 41, 861-864. https://doi.org/10.1016/j.physe.2009.01.007.
- Aydogdu, M. (2012), "Axial vibration analysis of nanorods (carbon nanotubes) embedded in elastic medium using nonlocal elasticity", Mech. Res. Commun., 43, 34-40. https://doi.org/10.1016/j.mechrescom.2012.02.001.
- Bilal Tahir, M., Riaz, K.N. and Asiri, A.M. (2019), "Boosting the performance of visible light-driven WO3/g-C3N4 anchored with BiVO4 nanoparticles for photocatalytic hydrogen evolution", Int. J. Energy Res., 43, 5747-5758. https://doi.org/10.1002/er.4673.
- Bensaid, I. Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
- Challamel, N., Rakotomanana, L. and Marrec, L. (2009), "A dispersive wave equation using nonlocal elasticity", Comptes Rendus Mecanique, 337(8), 591-595. https://doi.org/10.1016/j.crme.2009.06.028.
- Challamel, N. (2013), "Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams", Compos. Struct., 105, 351-368. https://doi.org/10.1016/j.compstruct.2013.05.026.
- Cruz, F.J.A.L., de Pablo, J.J. and Mota, J.P.B. (2014), "Endohedral confinement of a DNA dodecamer onto pristine carbon nanotubes and the stability of the canonical B form", J. Chem. Phys., 140(22), 225103. https://doi.org/10.1063/1.4881422.
- Cruz, F.J.A.L. and Mota, J.P.B., (2016), "Conformational thermodynamics of DNA strands in hydrophilic nanopores", J. Phys. Chem. C, 120(36), 20357-20367. https://doi.org/10.1021/acs.jpcc.6b06234.
- Dalton, A.B., Collins, S., Munoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., Kim, B.G. and Baughman, R.H. (2003), "Super-tough carbon-nanotube fibres", Nature, 423, 703. https://doi.org/10.1038/423703a.
- Ebrahimi, F., Dehghan, M. and Seyfi, A. (2019a), "Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes", Adv. Nano Res., 7(1), 1-11. https://doi.org/10.12989/anr.2019.7.1.001.
- Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019b), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 223-231. https://doi.org/10.12989/anr.2019.7.4.223.
- Ebrahimi, F., Daman, M. and Mahesh, V. (2019c), "Thermomechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory", Adv. Nano Res., 7(4), 249-263. https://doi.org/10.12989/anr.2019.7.4.249.
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218, 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.
- Eringen, A.C. (1967), "Theory of micropolar plates", Zeitschrift fur Angewandte Mathematik und Physik, 18, 12-30. https://doi.org/10.1007/BF01593891
- Eringen, A.C. (1972), "Nonlocal Polar Elastic Continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, U.S.A.
- Esen, I. (2020), "Response of a micro-capillary system exposed to a moving mass in magnetic field using nonlocal strain gradient theory", Int. J. Mech. Sci., 188, 105937. https://doi.org/10.1016/j.ijmecsci.2020.105937.
- Fu, Y., Li, L. and Hu, Y. (2018), "Enlarging quality factor in microbeam resonators by topology optimization", J. Therm. Stresses, 42(3), 341-360. https://doi.org/10.1080/01495739.2018.1489744.
- Fu, G., Zhou, S. and Qi, L., (2020), "On the strain gradient elasticity theory for isotropic materials", Int. J. Eng. Sci., 154, 103348. https://doi.org/10.1016/j.ijengsci.2020.103348.
- Ghavanloo, E., Rafiei, M. and Daneshmand, F. (2011), "In-plane vibration analysis of curved carbon nanotubes conveying fluid embedded in viscoelastic medium", Phys. Lett. A, 375, 1994-1999. https://doi.org/10.1016/j.physleta.2011.03.025.
- Guz, L., Fama, L., Candal, R. and Goyanes, S. (2017), "Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites", Carbohydrate Polymers, 157, 1611-1619. https://doi.org/10.1016/j.carbpol.2016.11.041.
- Hashemi, H. and Khaniki, H.B. (2017), "Dynamic behavior of multi-layered viscoelastic nanobeam system embedded in a viscoelastic medium with a moving nanoparticle", J. Mech., 33(5), 559-575. https://doi.org/10.1017/jmech.2016.91.
- Hsu, T.W., Yang, C.C., Chu, C.Y., Tung, Y.H., Kao, C.W., Wu, W.C. and Lin, K.S. (2019), "Size effect on the structure and magnetic properties of SmMn2O5 nanorods", Chin. J. Phys., 62, 368-373. https://doi.org/10.1016/j.cjph.2019.10.012.
- Imboden, M. and Mohanty, P. (2014), "Dissipation in nanoelectromechanical systems", Phys. Rep. 534, 89-146. http://doi.org/10.1016/j.physrep.2013.09.003.
- Karlicic, D., Kozic, P. and Pavlovic, R. (2014), "Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium", Compos. Struct., 115, 89-99. https://doi.org/10.1016/j.compstruct.2014.04.002.
- Karlicic, D., Cajic, M., Murmu, T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled doublenanorod systems", Eur. J. Mech. A-Solid, 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005.
- Karlicic, D., Kozic, P., Pavlovic, R. and Nesic, N. (2017), "Dynamic stability of single-walled carbon nanotube embedded in a viscoelastic medium under the influence of the axially harmonic load", Compos. Struct., 162, 227-243. https://doi.org/10.1016/j.compstruct.2016.12.003.
- Kazemi-Lari, M.A., Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Structural instability of carbon nanotubes embedded in viscoelastic medium and subjected to distributed tangential load", J. Mech. Sci. Technol., 27(7), 2085-2091. https://doi.org/10.1007/s12206-013-0522-z.
- Khosravi, F. and Hosseini, S.A. (2020), "On the viscoelastic carbon nanotube mass nanosensor using torsional forced vibration and Eringen's nonlocal model", Mech. Based Des. Struct. Mach., 50(3), 1030-1053. https://doi.org/ 10.1080/15397734.2020.1744001.
- Kung, S.W. and Singh, R. (1998a), "Vibration analysis of beams with multiple constrained layer damping patches", J. Sound Vib., 212(5), 1-28. https://doi.org/10.1006/jsvi.1997.1409.
- Kung, SW. and Singh, R. (1998b), "Complex eigensolutions of rectangular plates with damping patches", J. Sound Vib., 216(1), 1-28. https://doi.org/10.1006/jsvi.1998.1644.
- Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013.
- Li, L. and Hu, Y. (2016), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Comput. Mater. Sci., 112, 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044.
- Li, L., Hu, Y. and Li, X. (2016a), "Longitudinal vibration of sizedependent rods via nonlocal strain gradient theory", Int. J. Mech. Sci., 115-116, 135-144. https://doi.org/10.1016/j.ijmecsci.2016.06.011.
- Li, L., Hu, Y. and Ling, L. (2016b), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E, 75, 118-124, https://doi.org/10.1016/j.physe.2015.09.028.
- Li, X.F, Shen, Z.B. and Lee, K.Y. (2017), "Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia", Z. Angew. Math. Mech., 97(5), 602-616. https://doi.org/10.1002/zamm.201500186.
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Lu, L., Guo, X. and Zhao, J. (2017), "A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms", Int. J. Eng. Sci., 119, 265-277. https://doi.org/10.1016/j.ijengsci.2017.06.024.
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructuredependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56, 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007.
- Malikan, M. and Nguyen, V.B. (2018), "Buckling analysis of piezo-magnetic nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higherorder nonlocal strain gradient theory", Physica E, 102, 8-28. https://doi.org/10.1016/j.physe.2018.04.018.
- Mindlin, R. (1964), "Micro-structure in linear elasticity", Arch. Ration. Mech. Anal., 16, 52-78. https://doi.org/10.1007/BF00248490.
- Mindlin, R. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solids Struct., 1, 414-438. https://doi.org/10.1007/BF00248490.
- Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
- Mohammadian, M., Hosseini, S.M. and Abolbashari, M.H. (2019), "Lateral vibrations of embedded hetero-junction carbon nanotubes based on the nonlocal strain gradient theory: Analytical and differential quadrature element (DQE) methods", Physica E, 105, 68-82. https://doi.org/10.1016/j.physe.2018.08.022.
- Mohammadimehr, M., Monajemi, A.A. and Moradi, M. (2015), "Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-pasternak foundation using DQM", J. Mech. Sci. Technol., 29(6), 2297-2305. https://doi.org/10.1007/s12206-015-0522-2.
- Murmu, T. and Pradhan, S.C. (2009), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory using DQM", Physica E, 41, 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004.
- Murmu, T. and Adhikari, S. (2011), "Axial instability of doublenanobeam- systems", Phys. Lett. A, 375, 601-608. https://doi.org/10.1016/j.physleta.2010.11.007.
- Namazu, T., Isono, Y. and Tanaka, T. (2000), "Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM", J. Microelectromech Syst., 9(4), 450-459. https://doi.org/10.1109/84.896765.
- Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16, 2355-2359. https://doi.org/10.1088/0960-1317/16/11/015.
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.
- Pradhan, S.C. and Reddy, G.K. (2011), "Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM", Comput. Mater. Sci., 50, 1052-1056. https://doi.org/10.1016/j.commatsci.2010.11.001.
- Rafique, M., Bilal Tahir, M., Rafique, M.S., Safdar, N. and Tahir, R. (2020), "Chapter 2- nanostructure materials and their classification by dimensionality, nanotechnology and photocatalysis for environmental applications", Micro Nanotechnol., 27-44. https://doi.org/10.1016/B978-0-12-821192-2.00002-4.
- Rao, S.S. (2007), Vibration of Continuous systems, John Wiley & Sons, Inc. Hoboken, New Jersey., U.S.A.
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
- Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59, 2382-2399, https://doi.org/10.1016/j.jmps.2011.06.008.
- Roudbari, M.A., Jorshari, T.D., Lu, C., Ansari, R., Kouzani, A.Z. and Amabili, M. (2022), "A review of size-dependent continuum mechanics models for micro- and nano-structures", Thin Wall. Struct, 170, 108562. https://doi.org/10.1016/j.tws.2021.108562.
- Ruan, S.L., Gao, P., Yang, X.G. and Yu, T.X. (2003), "Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes", Polymer, 44(19), 5643-5654. https://doi.org/10.1016/S0032-3861(03)00628-1.
- Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Adv., 9, 045108. https://doi.org/10.1063/1.5086216.
- Sahmani, S., Aghdam, M.M. and Rabzcuk, T. (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082.
- She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063.
- Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43, 182-191. https://doi.org/10.1016/j.physe.2010.07.003.
- Simsek, M. (2011a), "Forced vibration of an Embedded Single-Walled Carbon Nanotube Traversed by a Moving Load Using Nonlocal Timoshenko Beam Theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
- Simsek, M. (2012), "Nonlocal effects in then free longitudinal vibration of axially functionally graded tapered nanorods", Comput. Mater. Sci., 61, 257-265. https://doi.org/10.1016/j.commatsci.2012.04.001.
- Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43, 182-191. https://doi.org/10.1016/j.physe.2010.07.003
- Simsek, M. (2011), "Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle", Comput. Mater. Sci., 50, 2112-2123. https://doi.org/10.1016/j.commatsci.2011.02.017.
- Simsek, M. and Reddy, J.N. (2013a), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017.
- Simsek, M. and Reddy, J.N. (2013b), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002.
- Simsek, M. (2014), "Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He's variational method", Compos. Struct., 112, 264-272. https://doi.org/10.1016/j.compstruct.2014.02.010.
- Simsek, M. (2016a), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013.
- Simsek, M. (2016b), "Axial vibration analysis of a nonorod embedded in elastic medium using nonlocal strain gradient theory", C ukurova University Journal of the Faculty of Engineering and Architecture, 31(1), 213-221. https://doi.org/10.21923/jesd.553328.
- Soltani, P., Taherian, M.M and Farshidianfar, A. (2010), "Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in viscoelastic medium", Phys. Lett. A, 43, 401-425.
- Tang, Y., Liu, Y. and Zhao, D. (2017), "Wave dispersion in viscoelastic single walled carbon nanotubes based on the nonlocal strain gradient Timoshenko beam model", Physica E, 87, 301-307. https://doi.org/10.1016/j.physe.2016.10.046.
- Tang, H., Li, L., Hu, Y., Meng, W. and Duan, K. (2019), "Vibration of nonlocal strain gradient beams incorporating Poisson's ratio and thickness effects", Thin Walled Struct., 137, 377-391. https://doi.org/10.1016/j.tws.2019.01.027.
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
- Thang, P.T., Nguyen-Thoi, T. and Lee, J. (2021a), "Modelling and analysis of bi-directional functionally graded nanobeams based on nonlocal strain gradient theory", Appl. Math. Comput., 407, 126303. https://doi.org/10.1016/j.amc.2021.126303.
- Thang, P.T., Tran, P. and Nguyen-Thoi, T. (2021b), "Applying nonlocal strain gradient theory to size-dependent analysis of functionally graded carbon nanotube-reinforced composite nanoplates", Appl. Math. Model., 93, 775-791. https://doi.org/10.1016/j.apm.2021.01.001.
- Thang, P.T., Do, D.T.T., Lee, J. and Nguyen-Thoi, T. (2021c), "Size-dependent analysis of functionally graded carbon nanotube-reinforced composite nanoshells with double curvature based on nonlocal strain gradient theory", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01517-1.
- Tsepoura, K.G., Papargyri-Beskou, S., Polyzos, D., Beskos, D.E. (2002), "Static and dynamic analysis of a gradient-elastic bar in tension", Arch. Appl. Mech., 72, 483-497. https://doi.org/10.1007/s00419-002-0231-z.
- Tung, Y.H., Chen, Y.J., Yang, C.C., Weng, C.Y., Huang, Y.K., Chen, Y.Y. and Wu, M.K. (2021), "Size effect on multiferroicity of GdMn2O5 nanorods", Chin. J. Phys., 70, 336-342. https://doi.org/10.1016/j.cjph.2021.01.011.
- Wang, J., Shen, H., Zhang, B., Liu, J. and Zhang, Y. (2018), "Complex modal analysis of transverse free vibrations for axially moving nanobeams based on the nonlocal strain gradient theory", Physica E, 101, 85-93. https://doi.org/10.1016/j.physe.2018.03.017.
- Wang, X.Q. and Lee, J.D. (2010), "Micromorphic theory: A gateway to nano world", Int. J. Smart Nano Mater., 1(2), 115- 135. https://doi.org/10.1080/19475411.2010.484207.
- Wu, C.P. and Li, W.C. (2017), "Asymptotic nonlocal elasticity theory for the buckling analysis of embedded single-layered nanoplates/graphene sheets under biaxial compression", Physica E, 89, 160-169. https://doi.org/10.1016/j.physe.2017.01.027.
- Yan, Y., Li, J.X., Ma, X.F. and Wang, W.Q. (2021), "Application and dynamical behavior of CNTs as fluidic nanosensors based on the nonlocal strain gradient theory", Sens. Actuator A Phys., 330, 112836. https://doi.org/10.1016/j.sna.2021.112836.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.