DOI QR코드

DOI QR Code

Assessment of nonlinear stability of geometrically imperfect nanoparticle-reinforced beam based on numerical method

  • Zheng, Yuxin (School of Civil Engineering and Architecture, Zhejiang Guangsha Vocational and Technical University of Construction) ;
  • Jin, Hongwei (School of Civil Engineering and Architecture, Zhejiang Guangsha Vocational and Technical University of Construction) ;
  • Jiang, Congying (School of Civil Engineering and Architecture, Zhejiang Guangsha Vocational and Technical University of Construction)
  • 투고 : 2021.07.01
  • 심사 : 2021.11.17
  • 발행 : 2022.08.25

초록

In this paper, a finite element (FE) simulation has been developed in order to examine the nonlinear stability of reinforced sandwich beams with graphene oxide powders (GOPs). In this regard, the nonlinear stability curves have been obtained asuming that the beam is under compressive loads leading to its buckling. The beam is considered to be a three-layered sandwich beam with metal core and GOP reinforced face sheets and it is rested on elastic substrate. Moreover, a higher-order refined beam theory has been considered to formulate the sandwich beam by employing the geometrically perfect and imperfect beam configurations. In the solving procedure, the utalized finite element simulation contains a novel beam element in which shear deformation has been included. The calculated stability curves of GOP-reinforced sandwich beams are shown to be dependent on different parameters such as GOP amount, face sheet thickness, geometrical imperfection and also center deflection.

키워드

참고문헌

  1. Abdulrazzaq, M.A., Muhammad, A.K., Kadhim, Z.D. and Faleh, N.M. (2020), "Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM", Couple. Syst. Mech., 9(3), 201-217. https://doi.org/10.12989/csm.2020.9.3.201.
  2. Ahankari, S.S and Kar, K.K. (2010), "Hysteresis measurements and dynamic mechanical characterization of functionally graded natural rubber-carbon black composites", Polym. Eng. Sci., 50(5), 871-877. https://doi.org/10.1002/pen.21601.
  3. Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020a), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Mater. Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033.
  4. Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020b), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res., 8(2), 157. https://doi.org/10.12989/anr.2020.8.2.157-167.
  5. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https:// doi.org/10.12989/smm.2019.6.2.147.
  6. Barati, M.R. and Shahverdi, H. (2017), "Dynamic modeling and vibration analysis of double-layered multi-phase porous nanocrystalline silicon nanoplate systems", Eur. J. Mech. A, 66, 256-268. https://doi.org/10.1016/j.euromechsol.2017.07.010.
  7. Barati, M.R. and Shahverdi, H. (2018a), "Forced vibration of porous functionally graded nanoplates under uniform dynamic load using general nonlocal stress-strain gradient theory", J. Vib. Control, 24(20), 4700-4715. https://doi.org/10.1177%2F1077546317733832. https://doi.org/10.1177%2F1077546317733832
  8. Barati, M.R. and Shahverdi, H. (2018b), "Nonlinear thermal vibration analysis of refined shear deformable FG nanoplates: Two semi-analytical solutions", J. Brazil. Soc. Mech. Sci. Eng., 40(2), 1-15. https://doi.org/10.1007/s40430-018-0968-0.
  9. Ebrahimi, F. and Barati, M.R. (2017a), "Dynamic modeling of preloaded size-dependent nano-crystalline nano-structures", Appl. Math. Mech., 38(12), 1753-1772. https://doi.org/10.1007/s10483-017-2291-8.
  10. Ebrahimi, F. and Barati, M.R. (2017b), "A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in twoparameter elastic foundation", Adv. Nano Res., 5(4), 313. https://doi.org/10.12989/anr.2017.5.4.313.
  11. Ebrahimi, F. and Barati, M.R. (2017c), "A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams", Superlattice Microst., 112, 64-78. https://doi.org/10.1016/j.spmi.2017.09.010.
  12. Ebrahimi, F. and Barati, M.R. (2017d), "Static stability analysis of embedded flexoelectric nanoplates considering surface effects", Appl. Phys. A, 123(10), 1-15. https://doi.org/10.1007/s00339-017-1265-y.
  13. Ebrahimi, F. and Barati, M.R. (2017e), "Electro-magnetic effects on nonlocal dynamic behavior of embedded piezoelectric nanoscale beams", J. Intell. Mater. Syst. Struct., 28(15), 2007-2022. https://doi.org/10.1177%2F1045389X16682850. https://doi.org/10.1177%2F1045389X16682850
  14. Ebrahimi, F. and Barati, M.R. (2018a), "Free vibration analysis of couple stress rotating nanobeams with surface effect under inplane axial magnetic field", J. Vib. Control, 24(21), 5097-5107. https://doi.org/10.1177%2F1077546317744719. https://doi.org/10.1177%2F1077546317744719
  15. Ebrahimi, F. and Barati, M.R. (2018b), "Vibration analysis of nonlocal strain gradient embedded single-layer graphene sheets under nonuniform in-plane loads", J. Vib. Control, 24(20), 4751-4763. https://doi.org/10.1177%2F1077546317734083. https://doi.org/10.1177%2F1077546317734083
  16. Ebrahimi, F. and Barati, M.R. (2018c), "Hygro-thermal vibration analysis of bilayer graphene sheet system via nonlocal strain gradient plate theory", J. Brazil. Soc. Mech. Sci. Eng., 40(9), 1-15. https://doi.org/10.1007/s40430-018-1350-y.
  17. Ebrahimi, F. and Barati, M.R. (2018d), "Static stability analysis of double-layer graphene sheet system in hygro-thermal environment", Microsyst. Technol., 24(9), 3713-3727. https://doi.org/10.1007/s00542-018-3827-0.
  18. Ebrahimi, F. and Barati, M.R. (2018e), "Influence of neutral surface position on dynamic characteristics of in-homogeneous piezo-magnetically actuated nanoscale plates", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(17), 3125-3143. https://doi.org/10.1177%2F0954406217728977. https://doi.org/10.1177%2F0954406217728977
  19. Ebrahimi, F. and Barati, M.R. (2018f), "Vibration analysis of parabolic shear-deformable piezoelectrically actuated nanoscale beams incorporating thermal effects", Mech. Adv. Mater. Struct., 25(11), 917-929. https://doi.org/10.1080/15376494.2017.1323141.
  20. Ebrahimi, F. and Barati, M.R. (2018g), "Nonlocal and surface effects on vibration behavior of axially loaded flexoelectric nanobeams subjected to in-plane magnetic field", Arab. J. Sci. Eng., 43(3), 1423-1433. https://doi.org/10.1007/s13369-017-2943-y.
  21. Ebrahimi, F. and Barati, M.R. (2018h), "Size-dependent thermally affected wave propagation analysis in nonlocal strain gradient functionally graded nanoplates via a quasi-3D plate theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(1), 162-173. https://doi.org/10.1177%2F0954406216674243. https://doi.org/10.1177%2F0954406216674243
  22. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M and Lanka, S. (2011), "The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNTreinforced aluminium composites", Compos. Part A, 42(3), 234-243. https://doi.org/10.1016/j.compositesa.2010.11.008.
  23. Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009), "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites", J. Mater. Chem., 19(38), 7098-7105. https://doi.org/10.1039/B908220D.
  24. Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020a), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Comput. Des., 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
  25. Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020b), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631.
  26. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.
  27. Forsat, M., Badnava, S., Mirjavadi, S.S., Barati, M.R. and Hamouda, A.M.S. (2020), "Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory", Eur. Phys. J. Plus, 135(1), 1-19. https://doi.org/10.1140/epjp/s13360-019-00042-x.
  28. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B and Schulte, K. (2004), "Carbon nanotube-reinforced epoxycomposites: Enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002.
  29. Ji, X., Guo, J., Ding, D., Gao, J., Hao, L., Guo, X. and Liu, Y. (2022), "Structural characterization and antioxidant activity of a novel high-molecular-weight polysaccharide from Ziziphus Jujuba cv. Muzao", J. Food Measurement Charact., 16(3), 2191-2200. https://doi.org/10.1007/s11694-022-01288-3.
  30. Keleshteri, M.M., Asadi, H. and Wang, Q. (2017), "Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation", Thin Wall. Struct., 120, 203-214. https://doi.org/10.1016/j.tws.2017.08.035.
  31. King, J.A., Klimek, D.R., Miskioglu, I. and Odegard, G.M. (2013), "Mechanical properties of graphene nanoplatelet/epoxy composites", J. Appl. Polym. Sci., 128(6), 4217-4223. https://doi.org/10.1002/app.38645.
  32. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  33. Kunbar, L.A.H., Hamad, L.B., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlinear vibration of smart nonlocal magneto-electroelastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects", Smart Struct. Syst., 25(5), 619-630. https://doi.org/10.12989/sss.2020.25.5.619.
  34. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concr., 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  35. Lin, F., Yang, C., Zeng, Q.H and Xiang, Y. (2018), "Morphological and mechanical properties of graphene-reinforced PMMA nanocomposites using a multiscale analysis", Comput. Mater. Sci., 150, 107-120. https://doi.org/10.1016/j.commatsci.2018.03.048.
  36. Ma, X., Quan, W., Dong, Z., Dong, Y. and Si, C. (2022), "Dynamic response analysis of vehicle and asphalt pavement coupled system with the excitation of road surface unevenness", Appl. Math. Modell., 104, 421-438. https://doi.org/10.1016/j.apm.2021.12.005.
  37. Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", J. Strain Anal. Eng. Des., 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285. https://doi.org/10.1177%2F0309324720917285
  38. Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Phys. A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.
  39. Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
  40. Mirjavadi, S.S., Forsat, M., Yahya, Y. Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020d), "Porosity effects on postbuckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
  41. Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B.M. and Hamouda, A.M.S. (2020e), "Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concr., 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
  42. Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.
  43. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.
  44. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020h), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
  45. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020i), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concr., 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
  46. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020j), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
  47. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020k), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Adv. Concr. Constr., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.
  48. Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020l), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
  49. Mou, B. and Bai, Y. (2018), "Experimental investigation on shear behavior of steel beam-to-CFST column connections with irregular panel zone", Eng. Struct., 168, 487-504. https://doi.org/10.1016/j.engstruct.2018.04.029.
  50. Mohammed, A., Sanjayan, J.G., Nazari, A. and Al-Saadi, N.T.K. (2017), "Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature", Aust. J. Civil Eng., 15(1), 61-71. https://doi.org/10.1080/14488353.2017.1372849.
  51. Muhammad, A.K., Hamad, L.B., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment", Adv. Mater. Res., 8(3), 237-257. https://doi.org/10.12989/amr.2019.8.3.237.
  52. Nieto, A., Bisht, A., Lahiri, D., Zhang, C and Agarwal, A. (2017), "Graphene reinforced metal and ceramic matrix composites: A review", Int. Mater. Rev., 62(5), 241-302. https://doi.org/10.1080/09506608.2016.1219481.
  53. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  54. Rezaiee-Pajand, M., Masoodi, A. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  55. Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020a), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265.
  56. Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2020b), "Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Adv. Nano Res., 8(3), 191-202. https://doi.org/10.12989/anr.2020.8.3.191.
  57. Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B Eng., 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020.
  58. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
  59. Xiao, G., Chen, B., Li, S. and Zhuo, X. (2022), "Fatigue life analysis of aero-engine blades for abrasive belt grinding considering residual stress", Eng. Fail. Anal., 131, 105846. https://doi.org/10.1016/j.engfailanal.2021.105846.
  60. Xiong, Q.M., Chen, Z., Huang, J.T., Zhang, M., Song, H., Hou, X. F. and Feng, Z.J. (2020), "Preparation, structure and mechanical properties of Sialon ceramics by transition metal-catalyzed nitriding reaction", Rare Metals, 39(5), 589-596. https://doi.org/10.1007/s12598-020-01385-6.
  61. Yan, Y., Feng, L., Shi, M., Cui, C. and Liu, Y. (2020), "Effect of plasma-activated water on the structure and in vitro digestibility of waxy and normal maize starches during heat-moisture treatment", Food Chem., 306, 125589. https://doi.org/10.1016/j.foodchem.2019.125589.
  62. Yang, B., Yang, J. and Kitipornchai, S. (2017), "Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity", Meccanica, 52(10), 2275-2292. https://doi.org/10.1007/s11012-016-0579-8.
  63. Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2020), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory", Mech. Adv. Mater. Struct., 27, 3-11. https://doi.org/10.1080/15376494.2018.1444216.