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A GENERALIZATION OF MAYNARD’S RESULTS ON THE
BRUN-TITCHMARSH THEOREM TO NUMBER FIELDS

JEOUNG-HWAN AHN AND SOUN-HI KwON

ABSTRACT. Maynard proved that there exists an effectively computable

. log‘ q . . L .
constant g1 such that if ¢ > q1, then N0 Li(z) € 7(z;9,m) < D Li(z)

for > ¢8. In this paper, we will show the following. Let §; and 62 be pos-
itive constants with 0 < 61,92 < 1 and 61 +92 > 1. Assume that L # Q is
a number field. Then there exist effectively computable constants co and

dj such that for dy > d; and = > exp (32671‘21 (log dL)1+52>, we have

mo(z) — gLi(;v)

G|

logdy, \ |C]
< (1 —co d2072> @LI(Z‘).

1. Introduction

Let L/K be a finite Galois extension of number fields with Galois group

G. For a prime ideal p of K which is unramified in L we let [L/TK} be the

conjugacy class of Frobenius automorphisms corresponding to the prime ideals
P of L lying above p. For each conjugacy class C of G we let mo(z) be the
number of prime ideals p of K unramified in L such that [L/TK} = (C and
Nggop < . The Chebotarev density theorem states that

IC|. .
wo(x) ~ @Ll(l’)

. x
as x — oo, where Li(z) = [, l(flgtt ~ ez

as x — oo (see [16] and [9]).
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844 J.-H. AHN AND S.-H. KWON

In [9] Lagarias and Odlyzko proved the following theorem. For a number
field F' we let dr denote the absolute value of the discriminant of F' and let
ngp = [F: Q).

Theorem 1.1 (Effective version of the Chebotarev density theorem). Let L #
Q and By be the possible exceptional zero of (1, (s) with 1—1/(4logdr) < By < 1.
There exist absolute effectively computable constants c¢; and co such that if

T > exp (10nL(10g dL)Q) ,
then

cl;. Cl,. ] 3
me(r) — :GLl(f) < :G:Ll(:cﬂo) + crzexp <_CQ ( 0g$> ) 7

nr
where the By term is present only when By exists.

The explicit error term is known in [18], [19], and [4]. This effective version
of the Chebotarev density theorem says that if z > exp (1OnL (log dL)Q), then
1€l
G|

If K = Q and L = Q(e*/4), the conjugacy classes of G correspond to
the residue classes modulo ¢, and the Chebotarev density theorem is the prime
number theorem for arithmetic progressions. Let 7(x; ¢, m) be the number of
primes less than or equal to « which are congruent to m (mod ¢) for positive

coprime integers m, q. Montgomery and Vaughan [12] proved the following
theorem.

mo(z) < (24 o(1)) = Li(z).

Theorem 1.2 (Brun-Titchmarsh theorem). For x > q we have
2 T
< .
~ 1—logg/logz ¢(q)logz
The term 2/(1 —log ¢/ log x) of Brun-Titchmarsh theorem is also 2 4 o(1) if
q is fixed and  — co. Maynard [11] proved the following theorem.

m(x;q,m)

Theorem 1.3 (Maynard). There exists an effectively computable constant ¢
such that for ¢ > g1 and x > ¢® we have
log q

Vas(q)

In this paper, we show the following.

Li(z) < m(x;9,m) < Li(z).

2
#(q)

Theorem 1.4. Let 61 and d2 be positive constants with 0 < 61,02 < 1 and
01 4+ 02 > 1. Assume that L # Q is a number field.

(i) There exist effectively computable constants ¢y and dy such that for
dr, > dy and x > exp (326715]:1 (log dL)1+62>, we have

< (1 — ¢ log dL) gLi(x).

cl..
770(35) - uLl(l’) d’z_o’?Q |G|

|G
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(if) Suppose that 1 (s) has no real zero in the interval
-1
[1 - (n‘zl (logdL)H‘b) ,1] .

Then for all € sufficiently small, there exists an effectively computable
constant do such that for dp > do and x > exp (326n5L1 (log dL)1+62),
we have

ro(z) - g:Li(x)‘ < (1 - %) :g:Li(x).

For comparison, Thorner and Zaman [15] proved the following theorem.

Theorem 1.5 (Thorner and Zaman). Let L/K be a Galois extension of number
fields with Galois group G and let C be any conjugacy class of G. Let H be an
abelian subgroup of G such that H N C' is nonempty. For a character x in the
dual group ﬁ, let f, be the conductor of x. If F' is the subfield of L fized by H

and Q = max{Np/qgfy : X € HY}, then
ro(e) < {2+ 0 (IF : Qla™ s ) L2 i)

for x> dS9°Q%?2 + dF2Q%7[F . QI*°F:U provided that dp Q[F : QY s
sufficiently large. If any of the following conditions also hold, then the error
term can be omitted:
e There exists a sequence of number fields Q =FyC Fy C---C F,=F
such that Fj11/F}; is a normal extension for all j =0,1,...,n — 1.
o 2F: Q)Y <« dpQ'2.
o 1> [F: Q]34

The range of x in Theorem 1.4 is narrower than that of « in Theorem 1.5.
However, the upper bound for w¢(z) in Theorem 1.4 is better than that in
Theorem 1.5.

For the lower bound for m¢(x), Zaman [20] proved the following theorem.

Theorem 1.6 (Zaman). Let L/F be a Galois extension of number fields with
Galois group G and let C C G be a conjugacy class. Then
1 |C]

i el §
wo(z) > o q) i(z)

for x > d3 and dy, is sufficiently large.
The range of x in Theorem 1.4 is narrower than that of x in Theorem 1.6.
However, the lower bound for 7o (x) in Theorem 1.4 is better than that in

Theorem 1.6. See also Theorem 3.1 in [14].
For much larger =, Kadiri and Wong [7] proved the following theorem.
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Theorem 1.7. Assume that L # Q. Then for x > exp (d1L1‘7),

€l =

> 0.484
mo(x) 04849 770

This improves significantly the result in [3]. The range of  in Theorem 1.4
is explicit and depends only on ny and dz. In the proof of Theorem 1.4 the
possibility of the existence of the exceptional zero of (1, (s) makes difficulties.
We will use the Deuring-Heilbronn phenomenon which asserts that if the ex-
ceptional zero exists, then the other zeros cannot lie very close to s = 1. Our
argument relies mainly on Corollary 3.8 to Theorem 3.7 (Deuring-Heilbronn
phenomenon).

In the following we write

L= n‘sLl (log alL)lJré2 .

2. Proof of Theorem 1.4

Let
Oc(t) == Z log Np.

p unramified in L/K
Npst, [ELE]=c

Using partial summation arguments we have, for x > 2

_ bo(x) /"” Oc(t)
mo(r) = log = + t(logt)?
Let
Yo(t) = Z log Np.
p unramified in L/K, m € N
Npm<t, [L/TK]mzc

We note that
bc(t) = Yo (t) + O(nict'?)
(see [9, (9.7)]). Then for z > 2 we have, for any constant A > 0,

bela) 4 Olows™™) | [* 4ot 00w, [ tel0)
log x t(logt)? 5 t(logt)?

7Tc(CL') =

This yields

mo(z) — 1y Li(x) = pel®) ~ 161 %$ +/m vl = it %tdt
© Gl B log = eac  t(logt)?
2172 oAL
+0 (nKlogJ: +nK£> '

In order to prove Theorem 1.4 we use the following.

Proposition 2.1. Assume that L # Q is a number field.
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(i) We suppose that Cr(s) has a real zero By in the interval [I — L1 1].
Let
(1) )\0 = (1 — Bo) IOgdL.
Then there exists an effectively computable constant ds such that for
dy, > ds and t > e~ we have

_lal, el

(ii) We suppose that ((s) has no real zero in the interval [l — £L71,1].
Then for all € sufficiently small, there exists an effectively computable
constant do such that for dy, > do and t > e325L e have

belt) gt\ <(1- >:g:t

See also [11, Proposition 3.5]. We will show Proposition 2.1(i) and (ii) in
Sections 3 and 4 below, respectively. We use two different kernel functions, one
in the case that (7 (s) has a real zero in the interval [1 — £71,1] and the other
when it does not. Assuming the Proposition 2.1 we will show Theorem 1.4.

2.1. Case I: ¢1(s) has a real zero 3y in the interval [1 — £71,1]

If £ > ¢325€ then we have

N 1‘1/2 i < g
Klog z K L ~ |G|

n
1Oggcxl/Q + Ze[') (as nKg = nL/‘Gl < nL|C‘/|G|)

C
< :Gx1/2 (as ny < logdy, < L < logx and L < x1/326) .

According to [6, Corollary 1.3.1]
(2) 1— BO > dz7.072

for dj, sufficiently large, so dz7'072 logd;, < Ao < 1/2 (see also [8, Corollary
5.2], [2, Corollary 7.4], [13, Lemma 3], and [1, Theorem 1]). Thus, for z > 326£
we have

1 d 1/3 326 Sy _
AoLi(z) > ;50751 = > dl;.omx 2> d? ny (log di)*2~7.072 1/
L

326nL (log dr,)%2

since x > d;’ . Thus, for z > €326L we have

o |C 6., o 5 1/2 L
2010 ) s>y s - 7072(nKx +nKe)'

2 |G| log z L
Therefore we have, for z > 326£
IC|
Ic| . ‘#ﬁc(x) - @I’ /m Yo(t) — |G| ’ Ao \C|
_ My, P MR b | | i B |
me(e) |G i@)) < log z * e t(logt)? @+ 2G| Li(z)
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IC] =z IC| t
< - -
< =205 gz (1~ ”|G| . 1(log1)?

o |C|
+ > \G|Ll(x)

C]
< [1-=) —Li(x)
( ) G|
provided that dy, is sufficiently large.

2.2. Case II : ¢1(s) has no real zero in the interval [1 — £, 1]

If £ > ¢325€ then we have

2172 £325L
log K L
IC| ng .
< @ logxxl/z + 76325[: (as ng =nr /|G| < np|C|/|G))
< Ig:xg%m% (as ng, < logdy, < £ < logz and e3%¢ < x325/326> .
Thus we have, for z > e326£
IC|

reli) - [GILa)

pe@ —fal o Joo - fd c|
< 1~1,.325/326
- IOg.’E + /e3zsc (10 t) dt + 0 (Glx )

Cl C t c
Ol Cl e [C]

= (- 6)ﬁlogx +(1- )|G| 8252 t(logt)zdt+ 2 |G\L i(@)
< (1 - 7) :g:L (x)

provided that dy, is sufficiently large.

3. Proof of point (i) of Proposition 2.1
We assume that (1, (s) has a real zero 3y in the interval [1 — £, 1]. We will

use Theorem 7.1 of [9]. Following [9], we let
= :g: S0 6L/

with g € C, where ¢ runs over the irreducible characters of G and L(s, ¢, L/ K)
is the Artin L-function associated to ¢. Using the orthogonality relations for
characters we have the Dirichlet series expansion

s)=Y_ > O(p™)(log Np)(Np)~"*

p m=1
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for Rs > 1, where p runs over the prime ideals of K, 0 < ©(p™) < 1, and for p

unramified in L
i [L/E]™
@(pm)z{l 1f[ . } C,

0 otherwise.

It is known that Fo(s) can be written in terms of Hecke L-functions (see [5],
[10], and [9, Section 4]). We have

Fo(s) = g L X(0) (51 ),

where E is the fixed field of the cyclic group (g), and y are certain primitive
Hecke characters satisfying x(P) = x ({L/TED for all prime ideals P of F

unramified in L and L(s, x, E) are certain Hecke L-functions attached to the
field E. We will use L(s, x) to denote L(s, x, F).

Let t > 2 and
tS
k = —,
1(s) .
For any o9 > 1 and T > 2 we let
1 oo+iT
Ic(t,T) = — F k ds.
W)= g [ Folh(s)ds

Choosing og = 1 + (logt)~! we obtain
Yo(t) — Io(t, T) < logtlogdy + nx logt + nxtT~*(logt)?
(see [9, (3.18)]). Let
1 [ootiT s

L(t,T) = — — d
x(&T) i Jyy i [(SyX)kl(S) $
and
L(t,T,U) := —1 —/(s Vk1(s)ds
x\t 4L . ori . I y X)R1

with U = j +1/2 for some non-negative integer j, where By is the positively
oriented rectangle with vertices at og — T, o9 + ¢TI, —U + T, and —U —¢T.

Proposition 3.1. Let n,(y) denote the number of zeros p = B+ iy of Hecke
L-function L(s,x, E) in the rectangle 0 < § <1 and |y —y| < 1. Then

ny(y) <log (deN f(x)) +nelog (lyl +2),
where f(x) is the conductor of x.
Proof. See [9, Lemma 5.4]. O

By using the zero density estimate of Proposition 3.1, in Section 6 of [9] it
is proved that

Ry (t, T,U) = L(t,T,U) — I(t,T)



850 J.-H. AHN AND S.-H. KWON

is small. Evaluating I,.(¢,7,U) by Cauchy’s residue theorem and sums over
zeros by using the density of zeros in Proposition 3.1 the following theorem is
proved.

Theorem 3.2 (Lagarias and Odlyzko). Ift > 2 and T > 2, then

C
wc(t) :Gt+8(t T) < Ro(t T)
where
|C’| tP 1
e Z Z p ralli g
[Spl<T ‘p‘<%
and
O] [tlogt+T nptlogtlogT
Ro(t,T) := | T logdy, +nylogt + T
t(logt)?
+1ogtlogdL+%.

The inner sums in the definition of S(t,T) are over the nontrivial zeros p of
L(s, x).-

Let
Ry (t) :=logdy +nplogt+nylogtlogdy,
tlogtlogdy, nrtlogtlogT  npt(logt)?
T) :=
RQ(t7 ) T + T + T s
and
Il

R(t,T) := ‘G| [R1(t) + Ra(t,T)] .

Since nk|G|/|C| < nr, we have
Thus, if £ > 2 and T > 2, then we have
Cl| _ IC]t™ e e ‘ ’
Po(t) — —=t| <
e~ i1 < {6 e 2 [GltEs 2

P#Bo I\rp\<T \pl<2

+ O(R(t,T)).

Lemma 3.3. Let ¢ > 0. If dy, is sufficiently large and t > e*, then we have
IClt? _|C] ( log ¢ ) ( ] )
=-—texp | —A + O* | es= Aot
[ “logdy G1™

where f(t) = O*(g(t)) means |f(t)] < g(t).
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Proof. We have

tPo logt )( ( Ao ))
— =texp | —A 1+0
Bo p( “logd; logdy,
logt 1 logt
=t A A Aot | .
exp( OlogdL>+O< dL ( 0 gdL) 0)

Since \g > d;7'072 log dy,, we have \g > d;s log dy, for dy, sufficiently large and

1 logt 1 logt
——exp | —Ao < exp | ——— |-
log dr, logdy, ) ~ logdy, d$

Let f(y) := 1 exp( logt) We have then

logy

1 logt\ (logy®
"(y) = ex (— ) ( logt —1].
F'w ylogy)? TP\ B E

Let yg > 0 be the critical point of f so that
logys 1

ys  logt

Then we have
loglogt  log8 + loglog yo
log yo log o '
Note that if dy, is sufficiently large, then e” is sufficiently large. Thus t > e~
is sufficiently large, which implies that yq is sufficiently large. We have then

loglogt <

0<8—
log yo

Thus, we have

1ex—10gt<1ex—1<8ex—7
logdy, P d$ ) ~ logyo P logy§ ) ~ loglogt P 8loglogt

for dy, sufficiently large and t > e”.
Hence, we have

lel el ( log ¢ ) . ( le )
——— = —1te A +0 — Aot
Gl B 1G] TP\ logdy, G|

O

Lemma 3.4. Let ¢ > 0. Ifdy is sujﬁciently large and t > €*, then we have

<%y

Proof. We have

LGS X s

\pl<2 pFL— ﬁo \p|<2
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Moreover, we have

3) IO ) < ogay

p#L— Bo \p\<

(see the proof of Theorem 9.2 of [9] in page 459). Since (1 — )"t < d7.972,
we have

(4) Z Z ‘ '<<d7072

\p|<2

51 5
Since Ao > d; " logdy and t > e£ = d}* (log dr) 2, we have

om  dLOT2 14.144 1
dr'* = Aot K Aot K Aot < ept
L Mot ° 1 gdr, t1—14.144/(nil(logdL)52) 0t = €Ao

for dj, sufficiently large and t > e*, hence

Ic|
il 2 Z <cigrt
\p\<2 (]
‘We choose
(5) T — nu(logt)®

Ao
Lemma 3.5. Let € > 0. If dy, is sufficiently large and t > e*, then we have

Cl
T) <er—
R(t ) 6|G|/\0t

Proof. We have
nr logtlogdy
Aot

7972 (log t) (2461+62) /(1461 +52)

< Aot
7 0

7.072

Ri(t) < Aot

logdy,
(log t)(2+51+52)/(1+51+52)

<for A< dy and ny, < (log t)1/(1+51+52)>

Aot (fort>d ! (log dz)’ )

t1—7.072/(n‘21 (log dL)52)

< Sxot

N

for dy, sufficiently large and t > e“. Since logdy < (logt)/(14%2) logn; <
loglogt, and log )\61 < logdy,, we have

log d 1 loglogt + log Ao
ogdr Aot + ogny, + 3loglogt +log Ay ' Aot +

1
t,T) = —————
Bo(t, T) ny,(logt)?2 (log t)2 logt

)\()t
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1 . loglogt + (logt)'/(1+92) 1
(1ogt)(1+252)/(1+52) ot + (log t)2

€
< =Xt
20

for dy, sufficiently large and t > e“. Thus, we have

IC|
R(t,T) < e =" 2t.
*T) ‘G 0

Let € > 0. From Theorem 3.2 and Lemmas 3.3-3.5, we have then, for ¢ > e~

IC] IC] logt Ic| tr
(6) ’¢C(t) — @t < @texp (_)\OlogdL) |G| Z Z —

p
p#Bo, [Spl<T
Il
O* [ e— ot
* ( G

provided that dy, is sufficiently large. Now we will show that

ONDY H«m

P#Bo> \\rp\<T

We will use the following properties on the locations of the nontrivial zeros of
CL(s).

Proposition 3.6. Assume that L # Q. Let p = B+ iy be a nontrivial zero of
Cr(s) with p # Bo. Then, we have

1
1-8>

29.571og (dr, (|v| +2)"")"
Proof. See Lemma 2.3 of [8] and Proposition 6.1 of [2]. O

Theorem 3.7 (Deuring-Heilbronn phenomenon). Assume that L # Q. There
are positive, absolute, effectively computable constants c3 and cy4 such that if

CL(B+1y) =0 with 8+ iy # Bo, then

1-86> e log ( c >
~ log (dr, (I +2)"") (1= Bo)log (dr (V1 +2)"*) )
Proof. See Theorem 5.1 of [8] and Theorem 7.3 of [2]. O

Corollary 3.8. Assume that dy, is sufficiently large. Let p = B + iy be a
zero of (r(s) with p # By and |y| < df° for some positive constant cs. If
Bo=1—MXo/logdy >1—L"", then there exists a positive constant cg such that

(1 —pB)nglogdr, > cglog ()\61) .

Proof. We have log (dr (|| +2)"*) < ¢ynplogdy for some constant ¢; > 0.

We may assume that c; > c¢4/2. From the fact that 1 — 3y = \g/logdy, < L1,
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dy, > 3"+/2 (2, p. 1421], [13, p. 140], and [8, p. 291]), and &; + J > 1 it follows
that

(1 —=pB)nglogdy

I
3 1og (A7) (1 - g</>) (Theorem 3.7)
¢t log(Ag ™)

c3 _ log(crny, /ca)
— log(A\ 1-—
cr 0g(X ) ( 01 logny + d2loglogdy,

v

\%

(for At > 1og£dL = n9' (log dL)62>

log(2¢7/(cqlog3)) + loglogdy, )

Y

) —1 _
cr log(% ) (1 91 log(2/log 3) + (81 + d2) loglog dy,

2 log(cr/ca) + . .
< logd d =1- d
(as ny < Tog 3 ogdy, and f(x) 51z + By loglog is decreasing

for sufficiently large dy,)
. log(A: 1) (1 _ log(2c7/(calog3)) + loglogdL>
c7 ((51 + (52) loglog dy,
> cglog(N\g!) (for 01 + 69 > 1)

with ¢g = 63(51 + 6y — 1)/(267(51 + 52)) O

It seems that the lower bound for 1 — § in Theorem 3.7 is best possible.
A possible better version of the Deuring-Heilbronn phenomenon would yield a
wider range of  in Theorem 1.4.

Lemma 3.9. Assume that dy, is sufficiently large. Let p = B+ivy be a nontrivial

zero of r(s) with p # By and |y| < T.
(i) Iflogt > dy,, then we have
logt
tP] <t —Cg§-————=
1< e (oo

for some constant cg > 0.
(ii) Assume thatt > e* and By > 1— L1, Iflogt < dr, then we have

|t?| < Aotexp (—cglog (Ag"))
for some constant cg > 3/d2.
Proof. (i) By (5)

1 t 3 d7.072 1 + 3 d7.072
nr(logt) <<”L £ (logt) (foer_1<< L >

T — oL
o logd;, logdy,

< (logt)'%%7 (for ny, < logdy, and d, < logt).
Thus we have
[t°] = texp (—(1 — B)logt)
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logt
29.57logdy (T + 2)"=

<texp ( ) (Proposition 3.6)

logt )
Stexp | — for n;, < ——logdy,
29.57log dy, (1 + 12y log(T + 2)) log 3

logt
< texp —cs(

l(yglogt)2> (fOI' 10gT < log log t)

for some constant cg > 0.
(i) By (5)

1 t 3 d7.072 1 t 3 d7‘072
T — ng(logt) < nrdp®™(logt) for )\0—1 < L
Ao logdr, logdy,

< di0.072 (for ny, < logdy, and logt <dy).

Therefore we have, for ¢ > e~
logt
[tP| = texp (—(1 — B)ny, logdLiog )
L

< texp (06 log ()\0_1) _—

logd; \ ™%
< Mot exp (—c6 ( o8 ) (log dz)* %2 log(Ay 1) + 1og<A01>>
nr

(for logt > L = n‘zl (log dL)H&Q)
< Aot exp (709 log(/\gl)) (for ny, < logdy, and é; + dp > 1)

for some positive constant cg. Moreover, we may assume that cg > 3/d2 since

dy, is sufficiently large. The inequality c¢g > 3/d5 will be needed in the proof of
Lemma 3.10 below. O

Lemma 3.10. Let e > 0. Assume that dy, is sufficiently large and o > 1—L71.
If t > €%, then we have

P
E E — §€/\0t.
> P
X p#Bo,ISpl<T

Proof. From the proof of Theorem 9.2 of [9, p. 459] we have
1
(7) >y ‘p‘ < log Tlog(dT™).
\p\z%f%ma

(i) Suppose that logt > dy,. According to the proof of point (i) of Lemma 3.9
we have T < (logt)'%-072. Since n; < logdy, < loglogt and logT < loglogt
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we have
1
E E ‘p' < log T'log(d;, T™ ) < (loglogt)®.
X P
I

% sp|<T

Thus we have
1
3 f

5
X o8, ISpl<T

%X ¥ [T x ]

lel < %.p#1=Bo 1> 5, Tapi<r

< d;% + (logdyr)? + (loglogt)® (for (1— )"
< (logt)""2 + (loglogt)? + (loglogt)® (for d;, < logt)
< (logt)™072,

Hence we have

2 2

P#Bo> \Jﬁ\<T

logt 1 C
< - .
< texp ( log log )2 > E g ‘p' (point (i) of Lemma 3.9)

< d}°™ and (3))

tP

p

P
P#Bo,ISpI<T

logt
< texp (e oy ) (o8t

logt (logt)7-072
= — Aot
eXp ( s (loglogt)? ) Ao 0

log t 7072 (log t)7 072 L, dpor
— Aot | for A
< exp( s (loglogt)2> logdy, 0 or Ap < logdy,
< exp —08& (log t)" 144 \ot (for dy, < logt)
(loglogt)? -
S 6)\0t.

(ii) Suppose that logt < dj,. According to the proof of point (ii) of Lemma
3.9 we have T' < d19-°72. From (7) we have

1
SREDY 2| <togTiog(arm)
p#B0s \p|>§ |Spl<T

Since ny, < logdy, and logT < logd;, we have

¥ x|

p#B0s1p1> %, |SpI<T

< log Tlog(d,T™) < (logdy)®.




THE BRUN-TITCHMARSH THEOREM 857

Hence we have

X X
p
X 8o, \p|>1 ISpl<T
1
< Aot exp (—cg log (A Z Z " (point (ii) of Lemma 3.9)
- P
X

p#B0. 1|2 %, |Sp|<T
< Mot exp (—cods loglogdy ) (log dp)? (for AL > £ (logdp) ! > (log dL)52)
= Aot exp (—(cgd2 — 3) loglogdy)
Aot exp (—(cgda — 3) logloglogt) (for dj, > logt and cgde > 3)

IN

€
< =Mt
50

Moreover we have, for ¢t > e£

\P|<2 < \/ngO;QK(ZfOT (4))
d7.072
T oVt

d14144 OgdL
—=— Aot | for A
< Vilogd, " (Or "> d””’)

Aot (for t>d; ot (o dL)éQ)

Aot

[1/2-14.148/ (nil (log dL)52)

IA

€
—Aot.
570 0

We can now complete the proof of point (i) of Proposition 2.1. Now we use
the same € in Lemmas 3.3, 3.4, 3.5, and 3.10. From (6) and Lemma 3.10 we
have, for t > e*

C] C| logt
—t < —t 2
1/10() |G| = ‘Gl )\O gdL + 6)\0
C| 5 52
< 7\G|t (exp (—nL (logdy,) /\0) + 26/\0)

],
al’

<(1=Xo)iAr

provided that dj, is sufficiently large.
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4. Proof of point (ii) of Proposition 2.1

We now assume that (z(s) has no real zero in the interval [1 — £71,1]. Let
a be a constant with @ > 1 and let [ € N. Set b := a!/!. We define

5 —1 (b -1\
Fa(s) = s (slogb)

N 1 2+i00
kg (U) :

be its inverse Mellin transform.

for t > 2. We let

= Tm kQ(S)UiS ds

2—1400

Lemma 4.1. The support of 15\2 is contained in the interval [0, at]. In partic-
ular, 0 < ka(u) <1 and ko(u) =1 fora <u <t.

Proof. For j > 1, define
llogt
wlu) = 1

— o g () 00) = oy (), and g5(0) = [ w(rhgyoa(u=r)dr

Since [ w(u)du = 1, the support of g; is contained in the interval [O, loli(gatt)},

0<g(u)<1,and g;(u) =1 for 11?)‘2? < u < 1. The result follows from the fact

that kAQ(u) =q (ll‘zé':) See also Lemma 3.2 of [17]. O

For our subsequent arguments we need the following lemmas.

Lemma 4.2. If z=x+1iy € C withx > 0 and y € R, then

‘ 1—e" <1
z
Proof. See [15, (2.10)]. O
Lemma 4.3. (i) If s=x > 0, then
afE
0<k < —t".
2(s) < —

In particular, 0 < ko(1) < at.
(i) If s = —m with positive integer m, then

0 <k <L (LY
2=t \loga )

(ii) Let s=x+iy € Cwithxz >0 and a € R with 0 < a <. Then
2a"t" 21 ¢
k2(8)] < —— (17097 ) -
[s] |s|log a
(iv) If s=x +iy € C with x > 0 and |s| > 1/2, then
|ka(s)] < 4a®t®.
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(V) If s=x+ iy € C with x > 0 and |s| <1/2, then
|ka(s)] < Vat'/?logt.
Proof. (i) From Lemma 4.2 we have

l
t* —1 1-b* a®
0 < kas) = x am(xlogi)) _;tx'

(ii) We have
1—t™ (1-b"\' 1 RS
= < .
0 < ka(s) m ( mlogb ) — mltl (loga)

(iii) From Lemma 4.2 we have
¢ 2a"t” 20\
< .
~ [s| \ls|loga

11—

slogb

2a"t”
|s]

1—-5%
slogb

|1 — t78| T
Is|

(iv) From Lemma 4.2 we have

[ka(s)] = t*

l

[1—¢% 1—-b°%
k = * z < 4a*t".
[F2(s) |s] “ slogh | — ¢
(v) From Lemma 4.2 we have
I
1—-t7° 1-b6—°
ka(s)| = t*logt @ < Vat'’?logt.
[k2()] o8 ‘ slogt “ slogb <Va o8 O

Lemma 4.4. Let € > 0. If dy, is sufficiently large and t > e32°% we have

Yo(t) — Z O(p™)log Np §6gt

Npm<t |G| .

Proof. From the arguments in page 424 of [9] we have

Yo(t)— Y O(p™)log Np| < 2logtlogdy.
Npm<t

Thus we have

vo(t)— D O(p™)log Np

Npm<t
< 2logtlogdy,
2(logt)? G||C|t logt
< (S(L)éuu, for logdy, < 5 o8 3
32505 (log d )% |C| |G| 325n%" (log dy)™

2 ng )“” (logt)? |C]| ( G| )
< —t [for — <n
= 325 (logdy, )" 02! <logdL t G| o] =7F
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< e@t (for np, < logdr). O
Let
1 24100
I(t) := — Fo(s)ka(s)ds.
2mi 2—i00
We have

=> Z@ )(log Np)ks(Np™),

p m=1
where p runs over all prime ideals of K.
For any given € > 0 we let @ := 1+ ¢/ny. Then we have 1 < a < 3/2. To
compute an upper bound for

Z O(p™)log Np

Npm<t
we will use the following lemma.

Lemma 4.5. (i) For x > 1,

m(z) < ClOlogx

with c19 = 1.25506, where 7w(x) is the number of primes p with p < x.
(ii) For z > 1,

2c10
<
S(0) < 228 .

where S(x) is the number of prime powers p" with h > 2 and p" < x.
(iii) Forxz >y > 1,

2y
—n(r—y) < .
")~ nle - 9) < o
Proof. (i) and (ii) are (1) and (2) [2, Lemma 3.2], respectively. For the proof
of (iii), see Theorem 2 and (1.12) in [12]. O

Lemma 4.6. Let ¢ > 0. If dy, is sufficiently large and t > €32°% we have

Z O(p™)log Np <56g
Npr<t 1G]

Proof. We have

Y e(™logNp| < > ©(™)(log Np)kx(Np™)

Npm<t t<Npm™<at

at
< nK/ logud M (u)
t
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< |C‘n /atlogudM(u)
> 7~ 'L )
Gl

where M (u) = |[{p" | p prime, h > 1, and p" < u}|. Note that

at at at
/ logudM(u):/ 10gud7r(u)—|—/ logudS(u).
¢ ¢ ¢

Then we have

at
/ logudm(u)
¢

= antonta) 0 1og1) - [ 7

< (w(at) — w(t)) logt + w(at) loga
logt at
< 2a-—-1)t 1
< 2(a—1) <log(a -1+ logt) * Cwlog(at) g
(points (iii) and (i) of Lemma 4.5)
&t ( logt ) 3c10log(3/2)
ny \logt+ loge — c11loglogt 650n‘21 (log dy,)1+32

IN

3
(for logny < loglogt, a =1+ ni < 2 and logt > 325n5L1 (logdL)1+62)
L

3€t 3c10log(3/2) < nr )1_51 t

ny  650(logdy )%+ \logdy, nr

<

4
< =4 (for ng, < logdy)
nr

for some positive constant ¢i;. Moreover, we have
at at
/ logud S(u) = (S(at)log(at) — S(t)logt) — / Sv) du
t ¢ u

< S(3t/2) log(3t/2)n%% (for o< 3)

2
logt ¢
nL\/(%g (point (ii) of Lemma 4.5)
log t (61+62+2)/(61+62+1) t
< (logt) (for ng < (logt)l/(1+51+52)>
Vit nr
< ei.
nr
Thus the result follows. O

Let [ := 2(81ny + 162).
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Lemma 4.7. Let € > 0. If dy, is sufficiently large and t > e32°% we have
| < lcl, . ICl
t+ |k2(p)
SRS

I(t) — —t
‘ |G|
where p runs through all the nontrivial zeros of L(s, x).

Proof. By Cauchy’s residue theorem, we have

o) = 1o O X0 (000 = 300) = 3 bet=2m) T Tlaha)

- Zkz(—2m+1)ZY(9 Zx )> kalp)

where a(x) and b(x) are non-negative integers such that a(x)+b(x) = ng. Since
k2(1) < at by the point (i) of Lemma 4.3, k2(0) = log ¢, ‘Zx x(g) (a(x) — 5()())‘
< nr, and

> ka(=2m) Y X(g)alx) + D ka(=2m+1) > X(g)b(x)
m X m=1 X

m=1

IV & 1
L <loga> mz: il

=1

IN

by the point (ii) of Lemma 4.3, we have

l
C €] —tJrO (nLlogt+nL (lo;a) ) +ZZ|]€2(P)|1 .

— <=
‘I“) EREE

Since ny, < (logt)/(014+9:41) we have

nplogt < (logt)01F92+2)/(01+d2+1)

Moreover, we have

2 for 1 < 2 for1<a<§
1oga - a—1 loga — a—1 2

648

IN

nr

324nyp,
) (for | = 2(81ny, + 162) < 324ny)
p(clgnL logny,)
< exp(cr3(log )t/ C1+92+ D) Joglog t) (for nr, < (log t)l/(51+62+1))

for some positive constants ci;o and c13. Thus the result follows. O



THE BRUN-TITCHMARSH THEOREM 863

To compute
PIPLAT]
X P
we will use Proposition 3.1 and the log-free zero density estimate of [15, The-
orem 4.5]. Define
N(o,T,x):=#{p=B+1iv:Llp,x) = 0,0 <B <1, |y| <T}
and
N(o,T):=> N(o,T,x)
X

forO<o<land T > 1.
Proposition 4.8. There is a constant c14 > 0 such that

N(0,T) < c1a (6162£T81n[‘+162)1*0.

Proof. It follows from [15, Theorem 4.5]. Note that our £ is larger than £ of
[15, (4.1)]. O

Lemma 4.9. Let € >0 and T := e~ *. If dy, is sufficiently large and t > e32°¢

we have
S0 Ika(p)] < 12c14et.
X

p=pB+iy
[v[>T

Proof. Let Ty > 1. Let p= B +iy with f=1—X/L and T} < |y| < 2T1. We
have

4 l< 8L\’ fori< 2 for1<a<§
loga) — \a—1 loga — a—1 2

2592 2 324ng,
< ( 59 "L> (for I = 2(81ny + 162) < 324ny)
€

IN

exp(cisnr lognyg)
exp(ci6(log )Y/ 0149240 Jog log t) (for ng, < (log t)l/(61+52+1))

41/325

IN

IN

for some positive constants ci5 and c¢15. Then

2a°tP 21 11-A)
[k2(p)] < C‘LT (ploga) (point (iil) of Lemma 4.3)
1(1-B)
2ﬁt 4l (QTl)*l(lfﬁ)
Ty \tY!loga

, 1\ =)
for t¥ =t Al and |p| > T
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1
< th—324(1—,6)/325(2T1)—1(1—,3)t for 4l < ¢1/325
-1 loga /) —

20, _3247/(3250) (2Ty) ML .

T
Thus, we have

Z Z k2(p)

p=B+iy
T1<|v|<2Ty

) L
< %t/o t‘32“/(3255)(2T1)_WLdN(l—)\/£,2T1)
9¢140 4—162/325
=T |:(2T1>81nL+162]
2c14a , [3241logt  llog(2T7) £ p—162X/(325L) .
T 325L L o (2T)BInL+162)A/L

(Proposition 4.8)
2c14a 4—162/325 4—162/325
-7 t 97 )8lnL+162 +2(1- 9T )8lnL+162
1 L(2T) (2T1)

< @t (for 1 <a<3/2).
T

Hence, we have

Z Z |k2(p)| S Z Z Z |k‘2(p)| S 6014t Z % = 120146t.
X X m=0

p=PB+ivy m=0 p=pB+ivy
[v|>T 2mr<|y|<2mtlr O

Lemma 4.10. Let e >0, T := €', and

L
" 29.57(logdy, + nplog(e=1 +2))

=

If dy, is sufficiently large and t > €32°% we have

Yoo D k()] < 2et.

p=B+ivy
0<B<1-R/L.|y|<T

Proof. Note that R > n‘sLl (log dL)52 since ny, < logdy. Let p = B + iy with
B=1-X/L and |y| <T = e . Firstly, we have

> > ks )]

X p=pB+ivy
0<B<Z1—R/L,|v|<T,|p|=1/2

c
< 4at/ tMEAN(1 — AL, e ) (point (iv) of Lemma 4.3)
R
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671)817bL+162 lOgt L (671)(817LL+162)>\/£ .
< 4eygat [1&163/325 < /. 638/ (375E) d)\| (Proposition 4.8)
6_1 81nL+162 325 lOgt (6—1)(81nL+162)R/£
< t
< Bew { 11637355 T 163 logt — 325(81ny, + 162) log(e~—1)  #163R/(325L)

3
(for l<a< 3 and ny, < (logt)l/(51+52+1)) .

Moreover, we have
(e-1)BlnL+162)R/L

+163R/(325L)
Cex ~ 163Rlogt  (81ng + 162)Rlog(e™1)
B 325L L
163R1logt 81 162)Rlog(e~!
< exp (—3252g> (as (81ny + ﬁ) og(c ) is bounded above)

< exp (—cl7n5Ll (log dL)52) (for logt > 325L and R > n5! (log dL)‘S?)

and

(671)81nL+162 163 B
~peses P T35 logt+ (81ng, + 162)log(e ")

163
<exp | —=—logt + c15log(e” )(10g t)l/(61+52+1)
325
(fOI‘ np <K (log t)l/(51+52+1)>

for some positive constants c;7 and c15. Hence, we have

> > ha(p)] < et.

X p=p+iy
0<BS1—R/L,|v|I<T,|p|21/2

Secondly, we have

Z Z ko (p)] < t1/2 10gtz Z (point (v) of Lemma 4.3)

X 11y X 12
< /2 logtlogdy (Proposition 3.1 and nj, < logdy,)
(log t)(2J1cm)/(1+52)t (for logd;, < (log t)l/(1+52)>
< et. t
Thus the result follows. (]

Lemma 4.11. Lete >0, T := €', and
L
29.57(log dyr, + nr log(e=1 +2))

R =
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If dy, is sufficiently large and t > €32 we have
Z > lka(p)| < (1 — (10 + 12¢14)€)t.
1— R/£<B<1 Iy|<T
Proof. From Proposition 3.6 and the definition of R we have

Z Z k()| = 0 or ka(Bo).

1— R/L<l3<1 [v|<T

Z Z I (p)] < ka(Bo).

=B+
V- R/E<B<L ST

where 3y is the exceptional real zero of (r(s) such that 1 — 8y > £~1. Thus
the result follows from the following inequality

|k2(Bo)| < 3t (for 1 < a < 3/2, By > 1/2, and point (i) of Lemma 4.3)
= 3texp(—(1 — fo)logt)
< 3e7325¢ (for (1 — By) logt > 325)
< (1— (10 + 12¢14)€)t. O

Thus we have

Now we use the same € in Lemmas 4.4, 4.6, 4.7, 4.9, 4.10, and 4.11. Gathering
Lemmas 4.4, 4.6, 4.7, 4.9, 4.10, and 4.11 we obtain, for t > e32°¢

PPN el

provided that dy, is sufficiently large.
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