A GENERALIZATION OF MAYNARD'S RESULTS ON THE BRUN-TITCHMARSH THEOREM TO NUMBER FIELDS

Jeoung-Hwan Ahn and Soun-Hi Kwon

Abstract. Maynard proved that there exists an effectively computable constant q_{1} such that if $q \geq q_{1}$, then $\frac{\log q}{\sqrt{q} \phi(q)} \operatorname{Li}(x) \ll \pi(x ; q, m)<\frac{2}{\phi(q)} \operatorname{Li}(x)$ for $x \geq q^{8}$. In this paper, we will show the following. Let δ_{1} and δ_{2} be positive constants with $0<\delta_{1}, \delta_{2}<1$ and $\delta_{1}+\delta_{2}>1$. Assume that $L \neq \mathbb{Q}$ is a number field. Then there exist effectively computable constants c_{0} and d_{1} such that for $d_{L} \geq d_{1}$ and $x \geq \exp \left(326 n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{1+\delta_{2}}\right)$, we have

$$
\left|\pi_{C}(x)-\frac{|C|}{|G|} \operatorname{Li}(x)\right| \leq\left(1-c_{0} \frac{\log d_{L}}{d_{L}^{7.072}}\right) \frac{|C|}{|G|} \operatorname{Li}(x) .
$$

1. Introduction

Let L / K be a finite Galois extension of number fields with Galois group G. For a prime ideal \mathfrak{p} of K which is unramified in L we let $\left[\frac{L / K}{\mathfrak{p}}\right]$ be the conjugacy class of Frobenius automorphisms corresponding to the prime ideals \mathfrak{P} of L lying above \mathfrak{p}. For each conjugacy class C of G we let $\pi_{C}(x)$ be the number of prime ideals \mathfrak{p} of K unramified in L such that $\left[\frac{L / K}{\mathfrak{p}}\right]=C$ and $N_{K / \mathbb{Q}} \mathfrak{p} \leq x$. The Chebotarev density theorem states that

$$
\pi_{C}(x) \sim \frac{|C|}{|G|} \operatorname{Li}(x)
$$

as $x \rightarrow \infty$, where $\operatorname{Li}(x)=\int_{2}^{x} \frac{d t}{\log t} \sim \frac{x}{\log x}$ as $x \rightarrow \infty$ (see [16] and [9]).

[^0]In [9] Lagarias and Odlyzko proved the following theorem. For a number field F we let d_{F} denote the absolute value of the discriminant of F and let $n_{F}=[F: \mathbb{Q}]$.
Theorem 1.1 (Effective version of the Chebotarev density theorem). Let $L \neq$ \mathbb{Q} and β_{0} be the possible exceptional zero of $\zeta_{L}(s)$ with $1-1 /\left(4 \log d_{L}\right) \leq \beta_{0} \leq 1$. There exist absolute effectively computable constants c_{1} and c_{2} such that if

$$
x \geq \exp \left(10 n_{L}\left(\log d_{L}\right)^{2}\right)
$$

then

$$
\left|\pi_{C}(x)-\frac{|C|}{|G|} \operatorname{Li}(x)\right| \leq \frac{|C|}{|G|} \operatorname{Li}\left(x^{\beta_{0}}\right)+c_{1} x \exp \left(-c_{2}\left(\frac{\log x}{n_{L}}\right)^{\frac{1}{2}}\right)
$$

where the β_{0} term is present only when β_{0} exists.
The explicit error term is known in [18], [19], and [4]. This effective version of the Chebotarev density theorem says that if $x \geq \exp \left(10 n_{L}\left(\log d_{L}\right)^{2}\right)$, then

$$
\pi_{C}(x) \leq(2+o(1)) \frac{|C|}{|G|} \operatorname{Li}(x)
$$

If $K=\mathbb{Q}$ and $L=\mathbb{Q}\left(e^{2 \pi i / q}\right)$, the conjugacy classes of G correspond to the residue classes modulo q, and the Chebotarev density theorem is the prime number theorem for arithmetic progressions. Let $\pi(x ; q, m)$ be the number of primes less than or equal to x which are congruent to $m(\bmod q)$ for positive coprime integers m, q. Montgomery and Vaughan [12] proved the following theorem.

Theorem 1.2 (Brun-Titchmarsh theorem). For $x>q$ we have

$$
\pi(x ; q, m) \leq \frac{2}{1-\log q / \log x} \frac{x}{\phi(q) \log x}
$$

The term $2 /(1-\log q / \log x)$ of Brun-Titchmarsh theorem is also $2+o(1)$ if q is fixed and $x \rightarrow \infty$. Maynard [11] proved the following theorem.

Theorem 1.3 (Maynard). There exists an effectively computable constant q_{1} such that for $q \geq q_{1}$ and $x \geq q^{8}$ we have

$$
\frac{\log q}{\sqrt{q} \phi(q)} \operatorname{Li}(x) \ll \pi(x ; q, m)<\frac{2}{\phi(q)} \operatorname{Li}(x) .
$$

In this paper, we show the following.
Theorem 1.4. Let δ_{1} and δ_{2} be positive constants with $0<\delta_{1}, \delta_{2}<1$ and $\delta_{1}+\delta_{2}>1$. Assume that $L \neq \mathbb{Q}$ is a number field.
(i) There exist effectively computable constants c_{0} and d_{1} such that for $d_{L} \geq d_{1}$ and $x \geq \exp \left(326 n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{1+\delta_{2}}\right)$, we have

$$
\left|\pi_{C}(x)-\frac{|C|}{|G|} \operatorname{Li}(x)\right| \leq\left(1-c_{0} \frac{\log d_{L}}{d_{L}^{7.072}}\right) \frac{|C|}{|G|} \operatorname{Li}(x)
$$

(ii) Suppose that $\zeta_{L}(s)$ has no real zero in the interval

$$
\left[1-\left(n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{1+\delta_{2}}\right)^{-1}, 1\right]
$$

Then for all ϵ sufficiently small, there exists an effectively computable constant d_{2} such that for $d_{L} \geq d_{2}$ and $x \geq \exp \left(326 n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{1+\delta_{2}}\right)$, we have

$$
\left|\pi_{C}(x)-\frac{|C|}{|G|} \operatorname{Li}(x)\right| \leq\left(1-\frac{\epsilon}{2}\right) \frac{|C|}{|G|} \operatorname{Li}(x) .
$$

For comparison, Thorner and Zaman [15] proved the following theorem.
Theorem 1.5 (Thorner and Zaman). Let L / K be a Galois extension of number fields with Galois group G and let C be any conjugacy class of G. Let H be an abelian subgroup of G such that $H \cap C$ is nonempty. For a character χ in the dual group \widehat{H}, let \mathfrak{f}_{χ} be the conductor of χ. If F is the subfield of L fixed by H and $Q=\max \left\{N_{F / \mathbb{Q}} \mathfrak{f}_{\chi}: \chi \in \widehat{H}\right\}$, then

$$
\pi_{C}(x)<\left\{2+O\left([F: \mathbb{Q}] x^{\left.-\frac{1}{166[F: Q}\right]+327}\right)\right\} \frac{|C|}{|G|} \operatorname{Li}(x)
$$

for $x \gg d_{F}^{695} Q^{522}+d_{F}^{232} Q^{367}[F: \mathbb{Q}]^{290[F: \mathbb{Q}]}$ provided that $d_{F} Q[F: \mathbb{Q}]{ }^{[F: \mathbb{Q}]}$ is sufficiently large. If any of the following conditions also hold, then the error term can be omitted:

- There exists a sequence of number fields $\mathbb{Q}=F_{0} \subset F_{1} \subset \cdots \subset F_{n}=F$ such that F_{j+1} / F_{j} is a normal extension for all $j=0,1, \ldots, n-1$.
- $(2[F: \mathbb{Q}])^{2[F: \mathbb{Q}]^{2}} \ll d_{F} Q^{1 / 2}$.
- $x \gg[F: \mathbb{Q}]^{334[F: \mathbb{Q}]^{2}}$.

The range of x in Theorem 1.4 is narrower than that of x in Theorem 1.5. However, the upper bound for $\pi_{C}(x)$ in Theorem 1.4 is better than that in Theorem 1.5.

For the lower bound for $\pi_{C}(x)$, Zaman [20] proved the following theorem.
Theorem 1.6 (Zaman). Let L / F be a Galois extension of number fields with Galois group G and let $C \subseteq G$ be a conjugacy class. Then

$$
\pi_{C}(x) \gg \frac{1}{d_{L}^{19}} \frac{|C|}{|G|} \operatorname{Li}(x)
$$

for $x \geq d_{L}^{35}$ and d_{L} is sufficiently large.
The range of x in Theorem 1.4 is narrower than that of x in Theorem 1.6. However, the lower bound for $\pi_{C}(x)$ in Theorem 1.4 is better than that in Theorem 1.6. See also Theorem 3.1 in [14].

For much larger x, Kadiri and Wong [7] proved the following theorem.

Theorem 1.7. Assume that $L \neq \mathbb{Q}$. Then for $x \geq \exp \left(d_{L}^{11.7}\right)$,

$$
\pi_{C}(x) \geq 0.4849 \frac{|C|}{|G|} \frac{x}{\log x}
$$

This improves significantly the result in [3]. The range of x in Theorem 1.4 is explicit and depends only on n_{L} and d_{L}. In the proof of Theorem 1.4 the possibility of the existence of the exceptional zero of $\zeta_{L}(s)$ makes difficulties. We will use the Deuring-Heilbronn phenomenon which asserts that if the exceptional zero exists, then the other zeros cannot lie very close to $s=1$. Our argument relies mainly on Corollary 3.8 to Theorem 3.7 (Deuring-Heilbronn phenomenon).

In the following we write

$$
\mathcal{L}:=n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{1+\delta_{2}}
$$

2. Proof of Theorem 1.4

Let

$$
\theta_{C}(t):=\sum_{\substack{\mathfrak{p} \text { unramified in } L / K \\ N \mathfrak{p} \leq t,\left[\frac{L K}{\mathfrak{p}}\right]=C}} \log N \mathfrak{p} .
$$

Using partial summation arguments we have, for $x \geq 2$

$$
\pi_{C}(x)=\frac{\theta_{C}(x)}{\log x}+\int_{2^{-}}^{x} \frac{\theta_{C}(t)}{t(\log t)^{2}} d t
$$

Let

$$
\psi_{C}(t):=\sum_{\substack{\mathfrak{p} \text { unramified in } L / K, m \in \mathbb{N} \\ N \mathfrak{p}^{m} \leq t,\left[\frac{L / K}{\mathfrak{p}}\right]^{m}=C}} \log N \mathfrak{p} .
$$

We note that

$$
\theta_{C}(t)=\psi_{C}(t)+O\left(n_{K} t^{1 / 2}\right)
$$

(see $[9,(9.7)]$). Then for $x \geq 2$ we have, for any constant $A>0$,
$\pi_{C}(x)=\frac{\psi_{C}(x)+O\left(n_{K} x^{1 / 2}\right)}{\log x}+\int_{e^{A \mathcal{L}}}^{x} \frac{\psi_{C}(t)+O\left(n_{K} t^{1 / 2}\right)}{t(\log t)^{2}} d t+\int_{2}^{e^{A \mathcal{L}}} \frac{\theta_{C}(t)}{t(\log t)^{2}} d t$.
This yields

$$
\begin{aligned}
\pi_{C}(x)-\frac{|C|}{|G|} \operatorname{Li}(x)= & \frac{\psi_{C}(x)-\frac{|C|}{|G|} x}{\log x}+\int_{e^{A \mathcal{L}}}^{x} \frac{\psi_{C}(t)-\frac{|C|}{|G|} t}{t(\log t)^{2}} d t \\
& +O\left(n_{K} \frac{x^{1 / 2}}{\log x}+n_{K} \frac{e^{A \mathcal{L}}}{\mathcal{L}}\right)
\end{aligned}
$$

In order to prove Theorem 1.4 we use the following.
Proposition 2.1. Assume that $L \neq \mathbb{Q}$ is a number field.
(i) We suppose that $\zeta_{L}(s)$ has a real zero β_{0} in the interval $\left[1-\mathcal{L}^{-1}, 1\right]$. Let

$$
\begin{equation*}
\lambda_{0}:=\left(1-\beta_{0}\right) \log d_{L} . \tag{1}
\end{equation*}
$$

Then there exists an effectively computable constant d_{3} such that for $d_{L} \geq d_{3}$ and $t \geq e^{\mathcal{L}}$ we have

$$
\left|\psi_{C}(t)-\frac{|C|}{|G|} t\right| \leq\left(1-\lambda_{0}\right) \frac{|C|}{|G|} t .
$$

(ii) We suppose that $\zeta_{L}(s)$ has no real zero in the interval $\left[1-\mathcal{L}^{-1}, 1\right]$. Then for all ϵ sufficiently small, there exists an effectively computable constant d_{2} such that for $d_{L} \geq d_{2}$ and $t \geq e^{325 \mathcal{L}}$ we have

$$
\left|\psi_{C}(t)-\frac{|C|}{|G|} t\right| \leq(1-\epsilon) \frac{|C|}{|G|} t
$$

See also [11, Proposition 3.5]. We will show Proposition 2.1(i) and (ii) in Sections 3 and 4 below, respectively. We use two different kernel functions, one in the case that $\zeta_{L}(s)$ has a real zero in the interval $\left[1-\mathcal{L}^{-1}, 1\right]$ and the other when it does not. Assuming the Proposition 2.1 we will show Theorem 1.4.

2.1. Case I: $\zeta_{L}(s)$ has a real zero β_{0} in the interval $\left[1-\mathcal{L}^{-1}, 1\right]$

If $x \geq e^{326 \mathcal{L}}$, then we have

$$
\begin{aligned}
n_{K} \frac{x^{1 / 2}}{\log x}+n_{K} \frac{e^{\mathcal{L}}}{\mathcal{L}} & \leq \frac{|C|}{|G|}\left(\frac{n_{L}}{\log x} x^{1 / 2}+\frac{n_{L}}{\mathcal{L}} e^{\mathcal{L}}\right) \quad\left(\text { as } n_{K}=n_{L} /|G| \leq n_{L}|C| /|G|\right) \\
& \ll \frac{|C|}{|G|} x^{1 / 2}\left(\text { as } n_{L} \ll \log d_{L} \leq \mathcal{L} \ll \log x \text { and } e^{\mathcal{L}} \leq x^{1 / 326}\right)
\end{aligned}
$$

According to [6, Corollary 1.3.1]

$$
\begin{equation*}
1-\beta_{0} \gg d_{L}^{-7.072} \tag{2}
\end{equation*}
$$

for d_{L} sufficiently large, so $d_{L}^{-7.072} \log d_{L} \ll \lambda_{0}<1 / 2$ (see also [8, Corollary 5.2], [2, Corollary 7.4], [13, Lemma 3], and [1, Theorem 1]). Thus, for $x \geq e^{326 \mathcal{L}}$ we have

$$
\lambda_{0} \operatorname{Li}(x) \gg \frac{\log d_{L}}{d_{L}^{7.072}} \frac{x}{\log x} \gg \frac{x^{1 / 3}}{d_{L}^{7.072}} x^{1 / 2} \gg d_{L}^{\frac{326}{3}} n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}}-7.072 x^{1 / 2}
$$

since $x \geq d_{L}^{326 n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}}}$. Thus, for $x \geq e^{326 \mathcal{L}}$ we have

$$
\frac{\lambda_{0}}{2} \frac{|C|}{|G|} \operatorname{Li}(x) \gg d_{L}^{\frac{326}{3}} n_{L}^{\delta_{1}\left(\log d_{L}\right)^{\delta_{2}}-7.072}\left(n_{K} \frac{x^{1 / 2}}{\log x}+n_{K} \frac{e^{\mathcal{L}}}{\mathcal{L}}\right) .
$$

Therefore we have, for $x \geq e^{326 \mathcal{L}}$

$$
\left|\pi_{C}(x)-\frac{|C|}{|G|} \operatorname{Li}(x)\right| \leq \frac{\left|\psi_{C}(x)-\frac{|C|}{|G|} x\right|}{\log x}+\int_{e^{\mathcal{L}}}^{x} \frac{\left|\psi_{C}(t)-\frac{|C|}{|G|} t\right|}{t(\log t)^{2}} d t+\frac{\lambda_{0}}{2} \frac{|C|}{|G|} \operatorname{Li}(x)
$$

$$
\begin{aligned}
\leq & \left(1-\lambda_{0}\right) \frac{|C|}{|G|} \frac{x}{\log x}+\left(1-\lambda_{0}\right) \frac{|C|}{|G|} \int_{e^{\mathcal{c}}}^{x} \frac{t}{t(\log t)^{2}} d t \\
& +\frac{\lambda_{0}}{2} \frac{|C|}{|G|} \operatorname{Li}(x) \\
\leq & \left(1-\frac{\lambda_{0}}{2}\right) \frac{|C|}{|G|} \operatorname{Li}(x)
\end{aligned}
$$

provided that d_{L} is sufficiently large.

2.2. Case II : $\zeta_{L}(s)$ has no real zero in the interval $\left[1-\mathcal{L}^{-1}, 1\right]$

If $x \geq e^{326 \mathcal{L}}$, then we have

$$
\begin{aligned}
& n_{K} \frac{x^{1 / 2}}{\log x}+n_{K} \frac{e^{325 \mathcal{L}}}{\mathcal{L}} \\
\leq & \frac{|C|}{|G|}\left(\frac{n_{L}}{\log x} x^{1 / 2}+\frac{n_{L}}{\mathcal{L}} e^{325 \mathcal{L}}\right) \quad\left(\text { as } n_{K}=n_{L} /|G| \leq n_{L}|C| /|G|\right) \\
< & \frac{|C|}{|G|} x^{325 / 326}\left(\text { as } n_{L} \ll \log d_{L} \leq \mathcal{L} \ll \log x \text { and } e^{325 \mathcal{L}} \leq x^{325 / 326}\right) .
\end{aligned}
$$

Thus we have, for $x \geq e^{326 \mathcal{L}}$

$$
\begin{aligned}
& \left|\pi_{C}(x)-\frac{|C|}{|G|} \operatorname{Li}(x)\right| \\
\leq & \frac{\left|\psi_{C}(x)-\frac{|C|}{|G|} x\right|}{\log x}+\int_{e^{325 \mathcal{L}}}^{x} \frac{\left|\psi_{C}(t)-\frac{|C|}{|G|} t\right|}{t(\log t)^{2}} d t+O\left(\frac{|C|}{|G|} x^{325 / 326}\right) \\
\leq & (1-\epsilon) \frac{|C|}{|G|} \frac{x}{\log x}+(1-\epsilon) \frac{|C|}{|G|} \int_{e^{325 \mathcal{L}}}^{x} \frac{t}{t(\log t)^{2}} d t+\frac{\epsilon}{2} \frac{|C|}{|G|} \operatorname{Li}(x) \\
\leq & \left(1-\frac{\epsilon}{2}\right) \frac{|C|}{|G|} \operatorname{Li}(x)
\end{aligned}
$$

provided that d_{L} is sufficiently large.

3. Proof of point (i) of Proposition 2.1

We assume that $\zeta_{L}(s)$ has a real zero β_{0} in the interval $\left[1-\mathcal{L}^{-1}, 1\right]$. We will use Theorem 7.1 of [9]. Following [9], we let

$$
F_{C}(s):=-\frac{|C|}{|G|} \sum_{\phi} \bar{\phi}(g) \frac{L^{\prime}}{L}(s, \phi, L / K)
$$

with $g \in C$, where ϕ runs over the irreducible characters of G and $L(s, \phi, L / K)$ is the Artin L-function associated to ϕ. Using the orthogonality relations for characters we have the Dirichlet series expansion

$$
F_{C}(s)=\sum_{\mathfrak{p}} \sum_{m=1}^{\infty} \Theta\left(\mathfrak{p}^{m}\right)(\log N \mathfrak{p})(N \mathfrak{p})^{-m s}
$$

for $\Re s>1$, where \mathfrak{p} runs over the prime ideals of $K, 0 \leq \Theta\left(\mathfrak{p}^{m}\right) \leq 1$, and for \mathfrak{p} unramified in L

$$
\Theta\left(\mathfrak{p}^{m}\right)= \begin{cases}1 & \text { if }\left[\frac{L / K}{\mathfrak{p}}\right]^{m}=C \\ 0 & \text { otherwise }\end{cases}
$$

It is known that $F_{C}(s)$ can be written in terms of Hecke L-functions (see [5], [10], and [9, Section 4]). We have

$$
F_{C}(s)=-\frac{|C|}{|G|} \sum_{\chi} \bar{\chi}(g) \frac{L^{\prime}}{L}(s, \chi, E)
$$

where E is the fixed field of the cyclic group $\langle g\rangle$, and χ are certain primitive Hecke characters satisfying $\chi(\mathcal{P})=\chi\left(\left[\frac{L / E}{\mathcal{P}}\right]\right)$ for all prime ideals \mathcal{P} of E unramified in L and $L(s, \chi, E)$ are certain Hecke L-functions attached to the field E. We will use $L(s, \chi)$ to denote $L(s, \chi, E)$.

Let $t \geq 2$ and

$$
k_{1}(s):=\frac{t^{s}}{s}
$$

For any $\sigma_{0}>1$ and $T \geq 2$ we let

$$
I_{C}(t, T):=\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} F_{C}(s) k_{1}(s) d s
$$

Choosing $\sigma_{0}=1+(\log t)^{-1}$ we obtain

$$
\psi_{C}(t)-I_{C}(t, T) \ll \log t \log d_{L}+n_{K} \log t+n_{K} t T^{-1}(\log t)^{2}
$$

(see $[9,(3.18)])$. Let

$$
I_{\chi}(t, T):=\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} \frac{L^{\prime}}{L}(s, \chi) k_{1}(s) d s
$$

and

$$
I_{\chi}(t, T, U):=\frac{1}{2 \pi i} \int_{B_{T, U}} \frac{L^{\prime}}{L}(s, \chi) k_{1}(s) d s
$$

with $U=j+1 / 2$ for some non-negative integer j, where $B_{T, U}$ is the positively oriented rectangle with vertices at $\sigma_{0}-i T, \sigma_{0}+i T,-U+i T$, and $-U-i T$.
Proposition 3.1. Let $n_{\chi}(y)$ denote the number of zeros $\rho=\beta+i \gamma$ of Hecke L-function $L(s, \chi, E)$ in the rectangle $0 \leq \beta \leq 1$ and $|\gamma-y| \leq 1$. Then

$$
n_{\chi}(y) \ll \log \left(d_{E} N f(\chi)\right)+n_{E} \log (|y|+2),
$$

where $f(\chi)$ is the conductor of χ.
Proof. See [9, Lemma 5.4].
By using the zero density estimate of Proposition 3.1, in Section 6 of [9] it is proved that

$$
R_{\chi}(t, T, U):=I_{\chi}(t, T, U)-I_{\chi}(t, T)
$$

is small. Evaluating $I_{\chi}(t, T, U)$ by Cauchy's residue theorem and sums over zeros by using the density of zeros in Proposition 3.1 the following theorem is proved.

Theorem 3.2 (Lagarias and Odlyzko). If $t \geq 2$ and $T \geq 2$, then

$$
\psi_{C}(t)-\frac{|C|}{|G|} t+S(t, T) \ll R_{0}(t, T)
$$

where

$$
S(t, T):=\frac{|C|}{|G|} \sum_{\chi} \bar{\chi}(g)\left(\sum_{\substack{\rho \\\left|S_{\rho}\right|<T}} \frac{t^{\rho}}{\rho}-\sum_{\substack{\rho \\|\rho|<\frac{1}{2}}} \frac{1}{\rho}\right)
$$

and

$$
\begin{aligned}
R_{0}(t, T):= & \frac{|C|}{|G|}\left[\frac{t \log t+T}{T} \log d_{L}+n_{L} \log t+\frac{n_{L} t \log t \log T}{T}\right] \\
& +\log t \log d_{L}+\frac{n_{K} t(\log t)^{2}}{T}
\end{aligned}
$$

The inner sums in the definition of $S(t, T)$ are over the nontrivial zeros ρ of $L(s, \chi)$.

Let

$$
\begin{gathered}
R_{1}(t):=\log d_{L}+n_{L} \log t+n_{L} \log t \log d_{L} \\
R_{2}(t, T):=\frac{t \log t \log d_{L}}{T}+\frac{n_{L} t \log t \log T}{T}+\frac{n_{L} t(\log t)^{2}}{T}
\end{gathered}
$$

and

$$
R(t, T):=\frac{|C|}{|G|}\left[R_{1}(t)+R_{2}(t, T)\right]
$$

Since $n_{K}|G| /|C| \leq n_{L}$, we have

$$
R_{0}(t, T) \leq R(t, T)
$$

Thus, if $t \geq 2$ and $T \geq 2$, then we have

$$
\begin{aligned}
\left|\psi_{C}(t)-\frac{|C|}{|G|} t\right| \leq & \frac{|C|}{|G|} \frac{t^{\beta_{0}}}{\beta_{0}}+\frac{|C|}{|G|} \sum_{\chi} \sum_{\substack{\rho \neq \beta_{0},|\Im \rho \rho|<T}}\left|\frac{t^{\rho}}{\rho}\right|+\frac{|C|}{|G|} \sum_{\chi} \sum_{\substack{\rho \\
|\rho|<\frac{1}{2}}}\left|\frac{1}{\rho}\right| \\
& +O(R(t, T)) .
\end{aligned}
$$

Lemma 3.3. Let $\epsilon>0$. If d_{L} is sufficiently large and $t \geq e^{\mathcal{L}}$, then we have

$$
\frac{|C|}{|G|} \frac{t^{\beta_{0}}}{\beta_{0}}=\frac{|C|}{|G|} t \exp \left(-\lambda_{0} \frac{\log t}{\log d_{L}}\right)+O^{*}\left(\epsilon \frac{|C|}{|G|} \lambda_{0} t\right),
$$

where $f(t)=O^{*}(g(t))$ means $|f(t)| \leq g(t)$.

Proof. We have

$$
\begin{aligned}
\frac{t^{\beta_{0}}}{\beta_{0}} & =t \exp \left(-\lambda_{0} \frac{\log t}{\log d_{L}}\right)\left(1+O\left(\frac{\lambda_{0}}{\log d_{L}}\right)\right) \\
& =t \exp \left(-\lambda_{0} \frac{\log t}{\log d_{L}}\right)+O\left(\frac{1}{\log d_{L}} \exp \left(-\lambda_{0} \frac{\log t}{\log d_{L}}\right) \lambda_{0} t\right) .
\end{aligned}
$$

Since $\lambda_{0} \gg d_{L}^{-7.072} \log d_{L}$, we have $\lambda_{0} \geq d_{L}^{-8} \log d_{L}$ for d_{L} sufficiently large and

$$
\frac{1}{\log d_{L}} \exp \left(-\lambda_{0} \frac{\log t}{\log d_{L}}\right) \leq \frac{1}{\log d_{L}} \exp \left(-\frac{\log t}{d_{L}^{8}}\right)
$$

Let $f(y):=\frac{1}{\log y} \exp \left(-\frac{\log t}{y^{8}}\right)$. We have then

$$
f^{\prime}(y)=\frac{1}{y(\log y)^{2}} \exp \left(-\frac{\log t}{y^{8}}\right)\left(\frac{\log y^{8}}{y^{8}} \log t-1\right) .
$$

Let $y_{0}>0$ be the critical point of f so that

$$
\frac{\log y_{0}^{8}}{y_{0}^{8}}=\frac{1}{\log t} .
$$

Then we have

$$
8-\frac{\log \log t}{\log y_{0}}=\frac{\log 8+\log \log y_{0}}{\log y_{0}}
$$

Note that if d_{L} is sufficiently large, then $e^{\mathcal{L}}$ is sufficiently large. Thus $t \geq e^{\mathcal{L}}$ is sufficiently large, which implies that y_{0} is sufficiently large. We have then

$$
0 \leq 8-\frac{\log \log t}{\log y_{0}} \leq 1
$$

Thus, we have

$$
\frac{1}{\log d_{L}} \exp \left(-\frac{\log t}{d_{L}^{8}}\right) \leq \frac{1}{\log y_{0}} \exp \left(-\frac{1}{\log y_{0}^{8}}\right) \leq \frac{8}{\log \log t} \exp \left(-\frac{7}{8 \log \log t}\right)
$$

for d_{L} sufficiently large and $t \geq e^{\mathcal{L}}$.
Hence, we have

$$
\frac{|C|}{|G|} \frac{t^{\beta_{0}}}{\beta_{0}}=\frac{|C|}{|G|} t \exp \left(-\lambda_{0} \frac{\log t}{\log d_{L}}\right)+O^{*}\left(\epsilon \frac{|C|}{|G|} \lambda_{0} t\right) .
$$

Lemma 3.4. Let $\epsilon>0$. If d_{L} is sufficiently large and $t \geq e^{\mathcal{L}}$, then we have

$$
\frac{|C|}{|G|} \sum_{\chi} \sum_{\substack{\rho \\|\rho|<\frac{1}{2}}}\left|\frac{1}{\rho}\right| \leq \epsilon \frac{|C|}{|G|} \lambda_{0} t
$$

Proof. We have

$$
\sum_{\chi} \sum_{\substack{\rho \\|\rho|<\frac{1}{2}}}\left|\frac{1}{\rho}\right| \leq \sum_{\chi} \sum_{\substack{\rho \\ \rho \neq 1-\beta_{0},|\rho|<\frac{1}{2}}}\left|\frac{1}{\rho}\right|+\frac{1}{1-\beta_{0}}
$$

Moreover, we have

$$
\begin{equation*}
\sum_{\chi} \sum_{\substack{\rho \\ \rho \neq 1-\beta_{0},|\rho|<\frac{1}{2}}}\left|\frac{1}{\rho}\right| \ll\left(\log d_{L}\right)^{2} \tag{3}
\end{equation*}
$$

(see the proof of Theorem 9.2 of [9] in page 459). Since $\left(1-\beta_{0}\right)^{-1} \ll d_{L}^{7.072}$, we have

$$
\begin{equation*}
\sum_{\chi} \sum_{\substack{\rho \\|\rho|<\frac{1}{2}}}\left|\frac{1}{\rho}\right| \ll d_{L}^{7.072} \tag{4}
\end{equation*}
$$

Since $\lambda_{0} \gg d_{L}^{-7.072} \log d_{L}$ and $t \geq e^{\mathcal{L}}=d_{L}^{n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}}}$, we have

$$
d_{L}^{7.072}=\frac{d_{L}^{7.072}}{\lambda_{0} t} \lambda_{0} t \ll \frac{d_{L}^{14.144}}{t \log d_{L}} \lambda_{0} t \ll \frac{1}{t^{1-14.144 /\left(n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}}\right)}} \lambda_{0} t \leq \epsilon \lambda_{0} t
$$

for d_{L} sufficiently large and $t \geq e^{\mathcal{L}}$, hence

$$
\frac{|C|}{|G|} \sum_{\chi} \sum_{\substack{\rho \\|\rho|<\frac{1}{2}}}\left|\frac{1}{\rho}\right| \leq \epsilon \frac{|C|}{|G|} \lambda_{0} t .
$$

We choose

$$
\begin{equation*}
T=\frac{n_{L}(\log t)^{3}}{\lambda_{0}} \tag{5}
\end{equation*}
$$

Lemma 3.5. Let $\epsilon>0$. If d_{L} is sufficiently large and $t \geq e^{\mathcal{L}}$, then we have

$$
R(t, T) \leq \epsilon \frac{|C|}{|G|} \lambda_{0} t
$$

Proof. We have

$$
\begin{aligned}
R_{1}(t) & \ll \frac{n_{L} \log t \log d_{L}}{\lambda_{0} t} \lambda_{0} t \\
& \ll \frac{d_{L}^{7.072}(\log t)^{\left(2+\delta_{1}+\delta_{2}\right) /\left(1+\delta_{1}+\delta_{2}\right)}}{t} \lambda_{0} t \\
& \ll \frac{\left(\text { for } \lambda_{0}^{-1} \ll \frac{d_{L}^{7.072}}{\log d_{L}} \text { and } n_{L} \ll(\log t)^{1 /\left(1+\delta_{1}+\delta_{2}\right)}\right)}{t^{1-7.072 /\left(n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}}\right)} \lambda_{0} t\left(\text { for } t \geq d_{L}^{n_{L}^{\delta_{L}}\left(\log d_{L}\right)^{\delta_{2}}}\right)} \\
& \leq \frac{\epsilon}{2} \lambda_{0} t
\end{aligned}
$$

for d_{L} sufficiently large and $t \geq e^{\mathcal{L}}$. Since $\log d_{L} \ll(\log t)^{1 /\left(1+\delta_{2}\right)}, \log n_{L} \ll$ $\log \log t$, and $\log \lambda_{0}^{-1} \ll \log d_{L}$, we have

$$
R_{2}(t, T)=\frac{\log d_{L}}{n_{L}(\log t)^{2}} \lambda_{0} t+\frac{\log n_{L}+3 \log \log t+\log \lambda_{0}^{-1}}{(\log t)^{2}} \lambda_{0} t+\frac{1}{\log t} \lambda_{0} t
$$

$$
\begin{aligned}
& \ll \frac{1}{(\log t)^{\left(1+2 \delta_{2}\right) /\left(1+\delta_{2}\right)}} \lambda_{0} t+\frac{\log \log t+(\log t)^{1 /\left(1+\delta_{2}\right)}}{(\log t)^{2}} \lambda_{0} t+\frac{1}{\log t} \lambda_{0} t \\
& \leq \frac{\epsilon}{2} \lambda_{0} t
\end{aligned}
$$

for d_{L} sufficiently large and $t \geq e^{\mathcal{L}}$. Thus, we have

$$
R(t, T) \leq \epsilon \frac{|C|}{|G|} \lambda_{0} t
$$

Let $\epsilon>0$. From Theorem 3.2 and Lemmas 3.3-3.5, we have then, for $t \geq e^{\mathcal{L}}$

$$
\begin{align*}
\left|\psi_{C}(t)-\frac{|C|}{|G|} t\right| \leq & \frac{|C|}{|G|} t \exp \left(-\lambda_{0} \frac{\log t}{\log d_{L}}\right)+\frac{|C|}{|G|} \sum_{\chi} \sum_{\substack{\rho \neq \beta_{0}, \mathcal{I}_{\Im \rho \mid<T}}}\left|\frac{t^{\rho}}{\rho}\right| \tag{6}\\
& +O^{*}\left(\epsilon \frac{|C|}{|G|} \lambda_{0} t\right)
\end{align*}
$$

provided that d_{L} is sufficiently large. Now we will show that

$$
\sum_{\chi} \sum_{\rho \neq \beta_{0}, \stackrel{\rho}{\Im} \rho \mid<T}\left|\frac{t^{\rho}}{\rho}\right| \leq \epsilon \lambda_{0} t .
$$

We will use the following properties on the locations of the nontrivial zeros of $\zeta_{L}(s)$.

Proposition 3.6. Assume that $L \neq \mathbb{Q}$. Let $\rho=\beta+i \gamma$ be a nontrivial zero of $\zeta_{L}(s)$ with $\rho \neq \beta_{0}$. Then, we have

$$
1-\beta>\frac{1}{29.57 \log \left(d_{L}(|\gamma|+2)^{n_{L}}\right)}
$$

Proof. See Lemma 2.3 of [8] and Proposition 6.1 of [2].
Theorem 3.7 (Deuring-Heilbronn phenomenon). Assume that $L \neq \mathbb{Q}$. There are positive, absolute, effectively computable constants c_{3} and c_{4} such that if $\zeta_{L}(\beta+i \gamma)=0$ with $\beta+i \gamma \neq \beta_{0}$, then

$$
1-\beta \geq \frac{c_{3}}{\log \left(d_{L}(|\gamma|+2)^{n_{L}}\right)} \log \left(\frac{c_{4}}{\left(1-\beta_{0}\right) \log \left(d_{L}(|\gamma|+2)^{n_{L}}\right)}\right) .
$$

Proof. See Theorem 5.1 of [8] and Theorem 7.3 of [2].
Corollary 3.8. Assume that d_{L} is sufficiently large. Let $\rho=\beta+i \gamma$ be a zero of $\zeta_{L}(s)$ with $\rho \neq \beta_{0}$ and $|\gamma| \ll d_{L}^{c_{5}}$ for some positive constant c_{5}. If $\beta_{0}=1-\lambda_{0} / \log d_{L} \geq 1-\mathcal{L}^{-1}$, then there exists a positive constant c_{6} such that

$$
(1-\beta) n_{L} \log d_{L} \geq c_{6} \log \left(\lambda_{0}^{-1}\right)
$$

Proof. We have $\log \left(d_{L}(|\gamma|+2)^{n_{L}}\right) \leq c_{7} n_{L} \log d_{L}$ for some constant $c_{7}>0$. We may assume that $c_{7}>c_{4} / 2$. From the fact that $1-\beta_{0}=\lambda_{0} / \log d_{L} \leq \mathcal{L}^{-1}$,
$d_{L} \geq 3^{n_{L} / 2}\left(\left[2\right.\right.$, p. 1421], [13, p. 140], and [8, p. 291]), and $\delta_{1}+\delta_{2}>1$ it follows that

$$
\begin{aligned}
& (1-\beta) n_{L} \log d_{L} \\
\geq & \frac{c_{3}}{c_{7}} \log \left(\lambda_{0}^{-1}\right)\left(1-\frac{\log \left(c_{7} n_{L} / c_{4}\right)}{\log \left(\lambda_{0}^{-1}\right)}\right) \quad \text { (Theorem 3.7) } \\
\geq & \frac{c_{3}}{c_{7}} \log \left(\lambda_{0}^{-1}\right)\left(1-\frac{\log \left(c_{7} n_{L} / c_{4}\right)}{\delta_{1} \log n_{L}+\delta_{2} \log \log d_{L}}\right) \\
& \left(\text { for } \lambda_{0}^{-1} \geq \frac{\mathcal{L}}{\log d_{L}}=n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}}\right) \\
\geq & \frac{c_{3}}{c_{7}} \log \left(\lambda_{0}^{-1}\right)\left(1-\frac{\log \left(2 c_{7} /\left(c_{4} \log 3\right)\right)+\log \log d_{L}}{\delta_{1} \log (2 / \log 3)+\left(\delta_{1}+\delta_{2}\right) \log \log d_{L}}\right) \\
& \quad\left(\text { as } n_{L} \leq \frac{2}{\log 3} \log d_{L} \text { and } f(x)=1-\frac{\log \left(c_{7} / c_{4}\right)+x}{\delta_{1} x+\delta_{2} \log \log d_{L}}\right. \text { is decreasing } \\
\quad & \text { for sufficiently } \left.\operatorname{large} d_{L}\right) \\
\geq & \frac{c_{3}}{c_{7}} \log \left(\lambda_{0}^{-1}\right)\left(1-\frac{\log \left(2 c_{7} /\left(c_{4} \log 3\right)\right)+\log \log d_{L}}{\left(\delta_{1}+\delta_{2}\right) \log \log d_{L}}\right) \\
\geq & c_{6} \log \left(\lambda_{0}^{-1}\right)\left(\text { for } \delta_{1}+\delta_{2}>1\right) \\
\text { with } & c_{6}=c_{3}\left(\delta_{1}+\delta_{2}-1\right) /\left(2 c_{7}\left(\delta_{1}+\delta_{2}\right)\right) .
\end{aligned}
$$

It seems that the lower bound for $1-\beta$ in Theorem 3.7 is best possible. A possible better version of the Deuring-Heilbronn phenomenon would yield a wider range of x in Theorem 1.4.
Lemma 3.9. Assume that d_{L} is sufficiently large. Let $\rho=\beta+i \gamma$ be a nontrivial zero of $\zeta_{L}(s)$ with $\rho \neq \beta_{0}$ and $|\gamma|<T$.
(i) If $\log t \geq d_{L}$, then we have

$$
\left|t^{\rho}\right| \leq t \exp \left(-c_{8} \frac{\log t}{(\log \log t)^{2}}\right)
$$

for some constant $c_{8}>0$.
(ii) Assume that $t \geq e^{\mathcal{L}}$ and $\beta_{0} \geq 1-\mathcal{L}^{-1}$. If $\log t \leq d_{L}$, then we have

$$
\left|t^{\rho}\right| \leq \lambda_{0} t \exp \left(-c_{9} \log \left(\lambda_{0}^{-1}\right)\right)
$$

for some constant $c_{9}>3 / \delta_{2}$.
Proof. (i) By (5)

$$
\begin{aligned}
T=\frac{n_{L}(\log t)^{3}}{\lambda_{0}} & \ll \frac{n_{L} d_{L}^{7.072}(\log t)^{3}}{\log d_{L}}\left(\text { for } \lambda_{0}{ }^{-1} \ll \frac{d_{L}^{7.072}}{\log d_{L}}\right) \\
& \ll(\log t)^{10.072}\left(\text { for } n_{L} \ll \log d_{L} \text { and } d_{L} \leq \log t\right)
\end{aligned}
$$

Thus we have

$$
\left|t^{\rho}\right|=t \exp (-(1-\beta) \log t)
$$

$$
\begin{aligned}
& \leq t \exp \left(-\frac{\log t}{29.57 \log d_{L}(T+2)^{n_{L}}}\right) \quad \text { (Proposition 3.6) } \\
& \leq t \exp \left(-\frac{\log t}{29.57 \log d_{L}\left(1+\frac{2}{\log 3} \log (T+2)\right)}\right) \quad\left(\text { for } n_{L} \leq \frac{2}{\log 3} \log d_{L}\right) \\
& \leq t \exp \left(-c_{8} \frac{\log t}{(\log \log t)^{2}}\right) \quad(\text { for } \log T \ll \log \log t)
\end{aligned}
$$

for some constant $c_{8}>0$.
(ii) By (5)

$$
\begin{aligned}
T=\frac{n_{L}(\log t)^{3}}{\lambda_{0}} & \ll \frac{n_{L} d_{L}^{7.072}(\log t)^{3}}{\log d_{L}}\left(\text { for } \lambda_{0}^{-1} \ll \frac{d_{L}^{7.072}}{\log d_{L}}\right) \\
& \ll d_{L}^{10.072}\left(\text { for } n_{L} \ll \log d_{L} \text { and } \log t \leq d_{L}\right)
\end{aligned}
$$

Therefore we have, for $t \geq e^{\mathcal{L}}$

$$
\begin{aligned}
\left|t^{\rho}\right|= & t \exp \left(-(1-\beta) n_{L} \log d_{L} \frac{\log t}{n_{L} \log d_{L}}\right) \\
& \leq t \exp \left(-c_{6} \log \left(\lambda_{0}^{-1}\right) \frac{\log t}{n_{L} \log d_{L}}\right) \quad(\text { Corollary 3.8) } \\
\leq & \lambda_{0} t \exp \left(-c_{6}\left(\frac{\log d_{L}}{n_{L}}\right)^{1-\delta_{1}}\left(\log d_{L}\right)^{\delta_{1}+\delta_{2}-1} \log \left(\lambda_{0}^{-1}\right)+\log \left(\lambda_{0}^{-1}\right)\right) \\
& \quad\left(\text { for } \log t \geq \mathcal{L}=n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{1+\delta_{2}}\right) \\
\leq & \lambda_{0} t \exp \left(-c_{9} \log \left(\lambda_{0}^{-1}\right)\right)\left(\text { for } n_{L} \ll \log d_{L} \text { and } \delta_{1}+\delta_{2}>1\right)
\end{aligned}
$$

for some positive constant c_{9}. Moreover, we may assume that $c_{9}>3 / \delta_{2}$ since d_{L} is sufficiently large. The inequality $c_{9}>3 / \delta_{2}$ will be needed in the proof of Lemma 3.10 below.

Lemma 3.10. Let $\epsilon>0$. Assume that d_{L} is sufficiently large and $\beta_{0} \geq 1-\mathcal{L}^{-1}$. If $t \geq e^{\mathcal{L}}$, then we have

$$
\sum_{\chi} \sum_{\rho \neq \beta_{0}, \stackrel{\rho}{\Im} \rho \mid<T}\left|\frac{t^{\rho}}{\rho}\right| \leq \epsilon \lambda_{0} t .
$$

Proof. From the proof of Theorem 9.2 of [9, p. 459] we have

$$
\begin{equation*}
\sum_{\chi} \sum_{\substack{\rho\left|\geq \frac{1}{2},|\Im \rho|<T\right.}}\left|\frac{1}{\rho}\right| \ll \log T \log \left(d_{L} T^{n_{L}}\right) \tag{7}
\end{equation*}
$$

(i) Suppose that $\log t \geq d_{L}$. According to the proof of point (i) of Lemma 3.9 we have $T \ll(\log t)^{10.072}$. Since $n_{L} \ll \log d_{L} \leq \log \log t$ and $\log T \ll \log \log t$
we have

$$
\sum_{\chi} \sum_{\substack{\rho \\|\rho| \geq \frac{1}{2},|\Im \rho|<T}}\left|\frac{1}{\rho}\right| \ll \log T \log \left(d_{L} T^{n_{L}}\right) \ll(\log \log t)^{3}
$$

Thus we have

$$
\begin{aligned}
& \sum_{\chi} \sum_{\substack{\rho \neq \beta_{0},|\Im \rho \rho|<T}}\left|\frac{1}{\rho}\right| \\
& \leq \frac{1}{1-\beta_{0}}+\sum_{\chi} \sum_{\substack{\rho \\
|\rho|<\frac{1}{2}, \rho \neq 1-\beta_{0}}}\left|\frac{1}{\rho}\right|+\sum_{\chi} \sum_{\substack{\rho \\
|\rho| \geq \frac{1}{2},|\Im \rho|<T}}\left|\frac{1}{\rho}\right| \\
& \ll d_{L}^{7.072}+\left(\log d_{L}\right)^{2}+(\log \log t)^{3}\left(\text { for }\left(1-\beta_{0}\right)^{-1} \ll d_{L}^{7.072} \text { and }(3)\right) \\
& \ll(\log t)^{7.072}+(\log \log t)^{2}+(\log \log t)^{3} \quad\left(\text { for } d_{L} \leq \log t\right) \\
& \ll(\log t)^{7.072} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \sum_{\chi} \sum_{\substack{\rho \\
\rho \neq \beta_{0},|\Im \rho|<T}}\left|\frac{t^{\rho}}{\rho}\right| \\
& \leq t \exp \left(-c_{8} \frac{\log t}{(\log \log t)^{2}}\right) \sum_{\chi} \sum_{\substack{\rho \\
\rho \neq \beta_{0},\left|\mathcal{S}_{\sim}\right|<T}}\left|\frac{1}{\rho}\right|(\text { point (i) of Lemma 3.9) } \\
& \ll t \exp \left(-c_{8} \frac{\log t}{(\log \log t)^{2}}\right)(\log t)^{7.072} \\
& =\exp \left(-c_{8} \frac{\log t}{(\log \log t)^{2}}\right) \frac{(\log t)^{7.072}}{\lambda_{0}} \lambda_{0} t \\
& \ll \exp \left(-c_{8} \frac{\log t}{(\log \log t)^{2}}\right) \frac{d_{L}^{7.072}(\log t)^{7.072}}{\log d_{L}} \lambda_{0} t\left(\text { for } \lambda_{0}^{-1} \ll \frac{d_{L}^{7.072}}{\log d_{L}}\right) \\
& \ll \exp \left(-c_{8} \frac{\log t}{(\log \log t)^{2}}\right)(\log t)^{14.144} \lambda_{0} t\left(\text { for } d_{L} \leq \log t\right) \\
& \leq \epsilon \lambda_{0} t \text {. }
\end{aligned}
$$

(ii) Suppose that $\log t \leq d_{L}$. According to the proof of point (ii) of Lemma 3.9 we have $T \ll d_{L}^{10.072}$. From (7) we have

$$
\sum_{\chi} \sum_{\substack{\rho \\ \rho \neq \beta_{0},|\rho| \geq \frac{1}{2},|\Im \rho|<T}}\left|\frac{1}{\rho}\right| \ll \log T \log \left(d_{L} T^{n_{L}}\right) .
$$

Since $n_{L} \ll \log d_{L}$ and $\log T \ll \log d_{L}$ we have

$$
\sum_{\chi} \sum_{\substack{\rho \\ \rho \neq \beta_{0},|\rho| \geq \frac{1}{2},|\Im \rho|<T}}\left|\frac{1}{\rho}\right| \ll \log T \log \left(d_{L} T^{n_{L}}\right) \ll\left(\log d_{L}\right)^{3} .
$$

Hence we have

$$
\begin{aligned}
& \sum_{\chi} \sum_{\substack{\rho \neq \beta_{0},|\rho| \geq \frac{1}{2},|\Im \rho|<T}}\left|\frac{t^{\rho}}{\rho}\right| \\
\leq & \lambda_{0} t \exp \left(-c_{9} \log \left(\lambda_{0}^{-1}\right)\right) \sum_{\chi} \sum_{\substack{\rho \neq \beta_{0},|\rho| \geq \frac{1}{2},|\Im \rho|<T}}\left|\frac{1}{\rho}\right|(\text { point }(\text { ii }) \text { of Lemma 3.9) } \\
\ll & \lambda_{0} t \exp \left(-c_{9} \delta_{2} \log \log d_{L}\right)\left(\log d_{L}\right)^{3}\left(\text { for } \lambda_{0}^{-1} \geq \mathcal{L}\left(\log d_{L}\right)^{-1} \geq\left(\log d_{L}\right)^{\delta_{2}}\right) \\
= & \lambda_{0} t \exp \left(-\left(c_{9} \delta_{2}-3\right) \log \log d_{L}\right) \\
\leq & \lambda_{0} t \exp \left(-\left(c_{9} \delta_{2}-3\right) \log \log \log t\right) \quad\left(\text { for } d_{L} \geq \log t \text { and } c_{9} \delta_{2}>3\right) \\
\leq & \frac{\epsilon}{2} \lambda_{0} t
\end{aligned}
$$

Moreover we have, for $t \geq e^{\mathcal{L}}$

$$
\begin{aligned}
\sum_{\chi} \sum_{\substack{\rho \\
|\rho|<\frac{1}{2}}}\left|\frac{t^{\rho}}{\rho}\right| & \leq \sqrt{t} \sum_{\chi} \sum_{\substack{\rho \\
|\rho|<\frac{1}{2}}}\left|\frac{1}{\rho}\right| \\
& \ll \sqrt{t} d_{L}^{7.072}(\text { for }(4)) \\
& =\frac{d_{L}^{7.072}}{\lambda_{0} \sqrt{t}} \lambda_{0} t \\
& \ll \frac{d_{L}^{14.144}}{\sqrt{t} \log d_{L}} \lambda_{0} t\left(\text { for } \lambda_{0} \gg \frac{\log d_{L}}{d_{L}^{7.072}}\right) \\
& \leq \frac{1}{t^{1 / 2-14.144 /\left(n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}}\right)}} \lambda_{0} t\left(\text { for } t \geq d_{L}^{n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}}}\right) \\
& \leq \frac{\epsilon}{2} \lambda_{0} t
\end{aligned}
$$

We can now complete the proof of point (i) of Proposition 2.1. Now we use the same ϵ in Lemmas 3.3, 3.4, 3.5, and 3.10. From (6) and Lemma 3.10 we have, for $t \geq e^{\mathcal{L}}$

$$
\begin{aligned}
\left|\psi_{C}(t)-\frac{|C|}{|G|} t\right| & \leq \frac{|C|}{|G|} t\left(\exp \left(-\lambda_{0} \frac{\log t}{\log d_{L}}\right)+2 \epsilon \lambda_{0}\right) \\
& \leq \frac{|C|}{|G|} t\left(\exp \left(-n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}} \lambda_{0}\right)+2 \epsilon \lambda_{0}\right) \\
& \leq\left(1-\lambda_{0}\right) \frac{|C|}{|G|} t
\end{aligned}
$$

provided that d_{L} is sufficiently large.

4. Proof of point (ii) of Proposition 2.1

We now assume that $\zeta_{L}(s)$ has no real zero in the interval $\left[1-\mathcal{L}^{-1}, 1\right]$. Let a be a constant with $a>1$ and let $l \in \mathbb{N}$. Set $b:=a^{1 / l}$. We define

$$
k_{2}(s):=\frac{t^{s}-1}{s}\left(\frac{b^{s}-1}{s \log b}\right)^{l}
$$

for $t \geq 2$. We let

$$
\widehat{k_{2}}(u):=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} k_{2}(s) u^{-s} d s
$$

be its inverse Mellin transform.
Lemma 4.1. The support of $\widehat{k_{2}}$ is contained in the interval $[0, a t]$. In particular, $0 \leq \widehat{k_{2}}(u) \leq 1$ and $\widehat{k_{2}}(u) \equiv 1$ for $a \leq u \leq t$.

Proof. For $j \geq 1$, define
$\omega(u)=\frac{l \log t}{\log a} 1_{\left[0, \frac{\log a}{l \log t}\right]}(u), g_{0}(u)=1_{[0,1]}(u)$, and $g_{j}(u)=\int_{\mathbb{R}} \omega(\tau) g_{j-1}(u-\tau) d \tau$.
Since $\int_{\mathbb{R}} \omega(u) d u=1$, the support of g_{l} is contained in the interval $\left[0, \frac{\log (a t)}{\log t}\right]$, $0 \leq g_{l}(u) \leq 1$, and $g_{l}(u) \equiv 1$ for $\frac{\log a}{\log t} \leq u \leq 1$. The result follows from the fact that $\widehat{k_{2}}(u)=g_{l}\left(\frac{\log u}{\log t}\right)$. See also Lemma 3.2 of [17].

For our subsequent arguments we need the following lemmas.
Lemma 4.2. If $z=x+i y \in \mathbb{C}$ with $x>0$ and $y \in \mathbb{R}$, then

$$
\left|\frac{1-e^{-z}}{z}\right| \leq 1
$$

Proof. See [15, (2.10)].
Lemma 4.3. (i) If $s=x>0$, then

$$
0<k_{2}(s) \leq \frac{a^{x}}{x} t^{x}
$$

In particular, $0<k_{2}(1) \leq a t$.
(ii) If $s=-m$ with positive integer m, then

$$
0<k_{2}(s) \leq \frac{1}{m^{l+1}}\left(\frac{l}{\log a}\right)^{l}
$$

(iii) Let $s=x+i y \in \mathbb{C}$ with $x>0$ and $\alpha \in \mathbb{R}$ with $0 \leq \alpha \leq l$. Then

$$
\left|k_{2}(s)\right| \leq \frac{2 a^{x} t^{x}}{|s|}\left(\frac{2 l}{|s| \log a}\right)^{\alpha}
$$

(iv) If $s=x+i y \in \mathbb{C}$ with $x>0$ and $|s| \geq 1 / 2$, then

$$
\left|k_{2}(s)\right| \leq 4 a^{x} t^{x} .
$$

(v) If $s=x+i y \in \mathbb{C}$ with $x>0$ and $|s| \leq 1 / 2$, then

$$
\left|k_{2}(s)\right| \leq \sqrt{a} t^{1 / 2} \log t
$$

Proof. (i) From Lemma 4.2 we have

$$
0<k_{2}(s)=\frac{t^{x}-1}{x} a^{x}\left(\frac{1-b^{-x}}{x \log b}\right)^{l} \leq \frac{a^{x}}{x} t^{x} .
$$

(ii) We have

$$
0<k_{2}(s)=\frac{1-t^{-m}}{m}\left(\frac{1-b^{-m}}{m \log b}\right)^{l} \leq \frac{1}{m^{l+1}}\left(\frac{l}{\log a}\right)^{l}
$$

(iii) From Lemma 4.2 we have

$$
\left|k_{2}(s)\right|=t^{x} \frac{\left|1-t^{-s}\right|}{|s|} a^{x}\left|\frac{1-b^{-s}}{s \log b}\right|^{l} \leq \frac{2 a^{x} t^{x}}{|s|}\left|\frac{1-b^{-s}}{s \log b}\right|^{\alpha} \leq \frac{2 a^{x} t^{x}}{|s|}\left(\frac{2 l}{|s| \log a}\right)^{\alpha}
$$

(iv) From Lemma 4.2 we have

$$
\left|k_{2}(s)\right|=t^{x} \frac{\left|1-t^{-s}\right|}{|s|} a^{x}\left|\frac{1-b^{-s}}{s \log b}\right|^{l} \leq 4 a^{x} t^{x} .
$$

(v) From Lemma 4.2 we have

$$
\left|k_{2}(s)\right|=t^{x} \log t\left|\frac{1-t^{-s}}{s \log t}\right| a^{x}\left|\frac{1-b^{-s}}{s \log b}\right|^{l} \leq \sqrt{a} t^{1 / 2} \log t
$$

Lemma 4.4. Let $\epsilon>0$. If d_{L} is sufficiently large and $t \geq e^{325 \mathcal{L}}$ we have

$$
\left|\psi_{C}(t)-\sum_{N \mathfrak{p}^{m} \leq t} \Theta\left(\mathfrak{p}^{m}\right) \log N \mathfrak{p}\right| \leq \epsilon \frac{|C|}{|G|} t .
$$

Proof. From the arguments in page 424 of [9] we have

$$
\left|\psi_{C}(t)-\sum_{N \mathfrak{p}^{m} \leq t} \Theta\left(\mathfrak{p}^{m}\right) \log N \mathfrak{p}\right| \leq 2 \log t \log d_{L}
$$

Thus we have

$$
\begin{aligned}
& \left|\psi_{C}(t)-\sum_{N \mathfrak{p}^{m} \leq t} \Theta\left(\mathfrak{p}^{m}\right) \log N \mathfrak{p}\right| \\
\leq & 2 \log t \log d_{L} \\
\leq & \frac{2(\log t)^{2}}{325 n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}}} \frac{|G||C|}{|C|} \frac{t}{|G|} \bar{t}\left(\text { for } \log d_{L} \leq \frac{\log t}{325 n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}}}\right) \\
\leq & \frac{2}{325\left(\log d_{L}\right)^{\delta_{1}+\delta_{2}-1}}\left(\frac{n_{L}}{\log d_{L}}\right)^{1-\delta_{1}} \frac{(\log t)^{2}}{t} \frac{|C|}{|G|} t\left(\text { for } \frac{|G|}{|C|} \leq n_{L}\right)
\end{aligned}
$$

$$
\leq \epsilon \frac{|C|}{|G|} t\left(\text { for } n_{L} \ll \log d_{L}\right)
$$

Let

$$
I(t):=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} F_{C}(s) k_{2}(s) d s
$$

We have

$$
I(t)=\sum_{\mathfrak{p}} \sum_{m=1}^{\infty} \Theta\left(\mathfrak{p}^{m}\right)(\log N \mathfrak{p}) \widehat{k_{2}}\left(N \mathfrak{p}^{m}\right)
$$

where \mathfrak{p} runs over all prime ideals of K.
For any given $\epsilon>0$ we let $a:=1+\epsilon / n_{L}$. Then we have $1<a<3 / 2$. To compute an upper bound for

$$
\left|I(t)-\sum_{N \mathfrak{p}^{m} \leq t} \Theta\left(\mathfrak{p}^{m}\right) \log N \mathfrak{p}\right|
$$

we will use the following lemma.
Lemma 4.5. (i) For $x>1$,

$$
\pi(x)<c_{10} \frac{x}{\log x}
$$

with $c_{10}=1.25506$, where $\pi(x)$ is the number of primes p with $p \leq x$.
(ii) For $x>1$,

$$
S(x) \leq \frac{2 c_{10}}{\log 2} \sqrt{x}
$$

where $S(x)$ is the number of prime powers p^{h} with $h \geq 2$ and $p^{h} \leq x$.
(iii) For $x>y>1$,

$$
\pi(x)-\pi(x-y) \leq \frac{2 y}{\log y}
$$

Proof. (i) and (ii) are (1) and (2) [2, Lemma 3.2], respectively. For the proof of (iii), see Theorem 2 and (1.12) in [12].

Lemma 4.6. Let $\epsilon>0$. If d_{L} is sufficiently large and $t \geq e^{325 \mathcal{L}}$ we have

$$
\left|I(t)-\sum_{N \mathfrak{p}^{m} \leq t} \Theta\left(\mathfrak{p}^{m}\right) \log N \mathfrak{p}\right| \leq 5 \epsilon \frac{|C|}{|G|} t
$$

Proof. We have

$$
\begin{aligned}
\left|I(t)-\sum_{N \mathfrak{p}^{m} \leq t} \Theta\left(\mathfrak{p}^{m}\right) \log N \mathfrak{p}\right| & \leq \sum_{t<N \mathfrak{p}^{m} \leq a t} \Theta\left(\mathfrak{p}^{m}\right)(\log N \mathfrak{p}) \widehat{k_{2}}\left(N \mathfrak{p}^{m}\right) \\
& \leq n_{K} \int_{t}^{a t} \log u d M(u)
\end{aligned}
$$

$$
\leq \frac{|C|}{|G|} n_{L} \int_{t}^{a t} \log u d M(u)
$$

where $M(u)=\mid\left\{p^{h} \mid p\right.$ prime, $h \geq 1$, and $\left.p^{h} \leq u\right\} \mid$. Note that

$$
\int_{t}^{a t} \log u d M(u)=\int_{t}^{a t} \log u d \pi(u)+\int_{t}^{a t} \log u d S(u) .
$$

Then we have

$$
\begin{aligned}
& \int_{t}^{a t} \log u d \pi(u) \\
= & (\pi(a t) \log (a t)-\pi(t) \log t)-\int_{t}^{a t} \frac{\pi(u)}{u} d u \\
\leq & (\pi(a t)-\pi(t)) \log t+\pi(a t) \log a \\
\leq & 2(a-1) t\left(\frac{\log t}{\log (a-1)+\log t}\right)+c_{10} \frac{a t}{\log (a t)} \log a \\
& (\text { points (iii) and (i) of Lemma 4.5) } \\
\leq & \frac{2 \epsilon}{n_{L}} t\left(\frac{\log t}{\log t+\log \epsilon-c_{11} \log \log t}\right)+\frac{3 c_{10} \log (3 / 2)}{650 n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{1+\delta_{2}}} t \\
& \left(\text { for } \log n_{L} \ll \log \log t, a=1+\frac{\epsilon}{n_{L}}<\frac{3}{2}, \text { and } \log t \geq 325 n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{1+\delta_{2}}\right) \\
\leq & \frac{3 \epsilon}{n_{L}} t+\frac{3 c_{10} \log (3 / 2)}{650\left(\log d_{L}\right)^{\delta_{1}+\delta_{2}}}\left(\frac{n_{L}}{\log d_{L}}\right)^{1-\delta_{1}} \frac{t}{n_{L}} \\
\leq & \frac{4 \epsilon}{n_{L}} t\left(\text { for } n_{L} \ll \log d_{L}\right)
\end{aligned}
$$

for some positive constant c_{11}. Moreover, we have

$$
\begin{aligned}
\int_{t}^{a t} \log u d S(u) & =(S(a t) \log (a t)-S(t) \log t)-\int_{t}^{a t} \frac{S(u)}{u} d u \\
& \leq S(3 t / 2) \log (3 t / 2) \frac{n_{L}}{t} \frac{t}{n_{L}}\left(\text { for } a<\frac{3}{2}\right) \\
& \ll \frac{n_{L} \log t}{\sqrt{t}} \frac{t}{n_{L}}(\text { point (ii) of Lemma } 4.5) \\
& \ll \frac{(\log t)^{\left(\delta_{1}+\delta_{2}+2\right) /\left(\delta_{1}+\delta_{2}+1\right)}}{\sqrt{t}} \frac{t}{n_{L}}\left(\text { for } n_{L} \ll(\log t)^{1 /\left(1+\delta_{1}+\delta_{2}\right)}\right) \\
& \leq \epsilon \frac{t}{n_{L}} .
\end{aligned}
$$

Thus the result follows.
Let $l:=2\left(81 n_{L}+162\right)$.

Lemma 4.7. Let $\epsilon>0$. If d_{L} is sufficiently large and $t \geq e^{325 \mathcal{L}}$ we have

$$
\left|I(t)-\frac{|C|}{|G|} t\right| \leq \epsilon \frac{|C|}{|G|} t+\frac{|C|}{|G|} \sum_{\chi} \sum_{\rho}\left|k_{2}(\rho)\right|,
$$

where ρ runs through all the nontrivial zeros of $L(s, \chi)$.
Proof. By Cauchy's residue theorem, we have

$$
\begin{aligned}
\frac{|G|}{|C|} I(t)= & k_{2}(1)-k_{2}(0) \sum_{\chi} \bar{\chi}(g)(a(\chi)-\delta(\chi))-\sum_{m=1}^{\infty} k_{2}(-2 m) \sum_{\chi} \bar{\chi}(g) a(\chi) \\
& -\sum_{m=1}^{\infty} k_{2}(-2 m+1) \sum_{\chi} \bar{\chi}(g) b(\chi)-\sum_{\chi} \bar{\chi}(g) \sum_{\rho} k_{2}(\rho)
\end{aligned}
$$

where $a(\chi)$ and $b(\chi)$ are non-negative integers such that $a(\chi)+b(\chi)=n_{E}$. Since $k_{2}(1) \leq a t$ by the point (i) of Lemma 4.3, $k_{2}(0)=\log t,\left|\sum_{\chi} \bar{\chi}(g)(a(\chi)-\delta(\chi))\right|$ $\leq n_{L}$, and

$$
\begin{aligned}
& \left|\sum_{m=1}^{\infty} k_{2}(-2 m) \sum_{\chi} \bar{\chi}(g) a(\chi)+\sum_{m=1}^{\infty} k_{2}(-2 m+1) \sum_{\chi} \bar{\chi}(g) b(\chi)\right| \\
\leq & n_{L} \sum_{m=1}^{\infty} k_{2}(-m) \\
\leq & n_{L}\left(\frac{l}{\log a}\right)^{l} \sum_{m=1}^{\infty} \frac{1}{m^{l+1}}
\end{aligned}
$$

by the point (ii) of Lemma 4.3, we have

$$
\left|I(t)-\frac{|C|}{|G|} t\right| \leq \frac{|C|}{|G|}\left[\frac{\epsilon}{n_{L}} t+O\left(n_{L} \log t+n_{L}\left(\frac{l}{\log a}\right)^{l}\right)+\sum_{\chi} \sum_{\rho}\left|k_{2}(\rho)\right|\right] .
$$

Since $n_{L} \ll(\log t)^{1 /\left(\delta_{1}+\delta_{2}+1\right)}$ we have

$$
n_{L} \log t \ll(\log t)^{\left(\delta_{1}+\delta_{2}+2\right) /\left(\delta_{1}+\delta_{2}+1\right)}
$$

Moreover, we have

$$
\begin{aligned}
n_{L}\left(\frac{l}{\log a}\right)^{l} & \leq n_{L}\left(\frac{2 l}{a-1}\right)^{l}\left(\text { for } \frac{1}{\log a} \leq \frac{2}{a-1} \text { for } 1<a<\frac{3}{2}\right) \\
& \leq n_{L}\left(\frac{648 n_{L}^{2}}{\epsilon}\right)^{324 n_{L}}\left(\text { for } l=2\left(81 n_{L}+162\right) \leq 324 n_{L}\right) \\
& \leq \exp \left(c_{12} n_{L} \log n_{L}\right) \\
& \leq \exp \left(c_{13}(\log t)^{1 /\left(\delta_{1}+\delta_{2}+1\right)} \log \log t\right)\left(\text { for } n_{L} \ll(\log t)^{1 /\left(\delta_{1}+\delta_{2}+1\right)}\right)
\end{aligned}
$$

for some positive constants c_{12} and c_{13}. Thus the result follows.

To compute

$$
\sum_{\chi} \sum_{\rho}\left|k_{2}(\rho)\right|
$$

we will use Proposition 3.1 and the log-free zero density estimate of [15, Theorem 4.5]. Define

$$
N(\sigma, T, \chi):=\sharp\{\rho=\beta+i \gamma: L(\rho, \chi)=0, \sigma<\beta<1,|\gamma| \leq T\}
$$

and

$$
N(\sigma, T):=\sum_{\chi} N(\sigma, T, \chi)
$$

for $0<\sigma<1$ and $T \geq 1$.
Proposition 4.8. There is a constant $c_{14}>0$ such that

$$
N(\sigma, T) \leq c_{14}\left(e^{162 \mathcal{L}} T^{81 n_{L}+162}\right)^{1-\sigma}
$$

Proof. It follows from [15, Theorem 4.5]. Note that our \mathcal{L} is larger than \mathcal{L} of [15, (4.1)].

Lemma 4.9. Let $\epsilon>0$ and $T:=\epsilon^{-1}$. If d_{L} is sufficiently large and $t \geq e^{325 \mathcal{L}}$ we have

$$
\sum_{\chi} \sum_{\substack{\rho=\beta+i \gamma \\|\gamma|>T}}\left|k_{2}(\rho)\right| \leq 12 c_{14} \epsilon t .
$$

Proof. Let $T_{1} \geq 1$. Let $\rho=\beta+i \gamma$ with $\beta=1-\lambda / \mathcal{L}$ and $T_{1} \leq|\gamma| \leq 2 T_{1}$. We have

$$
\begin{aligned}
\left(\frac{4 l}{\log a}\right)^{l} & \leq\left(\frac{8 l}{a-1}\right)^{l}\left(\text { for } \frac{1}{\log a} \leq \frac{2}{a-1} \text { for } 1<a<\frac{3}{2}\right) \\
& \leq\left(\frac{2592 n_{L}^{2}}{\epsilon}\right)^{324 n_{L}}\left(\text { for } l=2\left(81 n_{L}+162\right) \leq 324 n_{L}\right) \\
& \leq \exp \left(c_{15} n_{L} \log n_{L}\right) \\
& \leq \exp \left(c_{16}(\log t)^{1 /\left(\delta_{1}+\delta_{2}+1\right)} \log \log t\right)\left(\text { for } n_{L} \ll(\log t)^{1 /\left(\delta_{1}+\delta_{2}+1\right)}\right) \\
& \leq t^{1 / 325}
\end{aligned}
$$

for some positive constants c_{15} and c_{16}. Then

$$
\begin{aligned}
\left|k_{2}(\rho)\right| \leq & \frac{2 a^{\beta} t^{\beta}}{|\rho|}\left(\frac{2 l}{|\rho| \log a}\right)^{l(1-\beta)}(\text { point (iii) of Lemma 4.3) } \\
\leq & \frac{2 a}{T_{1}} t\left(\frac{4 l}{t^{1 / l} \log a}\right)^{l(1-\beta)}\left(2 T_{1}\right)^{-l(1-\beta)} \\
& \left(\text { for } t^{\beta}=t\left(\frac{1}{t^{1 / l}}\right)^{l(1-\beta)} \quad \text { and }|\rho| \geq T_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{2 a}{T_{1}} t^{-324(1-\beta) / 325}\left(2 T_{1}\right)^{-l(1-\beta)} t\left(\text { for }\left(\frac{4 l}{\log a}\right)^{l} \leq t^{1 / 325}\right) \\
& =\frac{2 a}{T_{1}} t^{-324 \lambda /(325 \mathcal{L})}\left(2 T_{1}\right)^{-l \lambda / \mathcal{L}} t .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& \sum_{\chi} \sum_{\substack{\rho=\beta+i \gamma \\
T_{1} \leq|\gamma| \leq 2 T_{1}}}\left|k_{2}(\rho)\right| \\
\leq & \frac{2 a}{T_{1}} t \int_{0}^{\mathcal{L}} t^{-324 \lambda /(325 \mathcal{L})}\left(2 T_{1}\right)^{-l \lambda / \mathcal{L}} d N\left(1-\lambda / \mathcal{L}, 2 T_{1}\right) \\
\leq & \frac{2 c_{14} a}{T_{1}} t\left[\frac{t^{-162 / 325}}{\left(2 T_{1}\right)^{81 n_{L}+162}}\right] \\
& +\frac{2 c_{14} a}{T_{1}} t\left[\frac{324 \log t}{325 \mathcal{L}}+\frac{l \log \left(2 T_{1}\right)}{\mathcal{L}}\right] \int_{0}^{\mathcal{L}} \frac{t^{-162 \lambda /(325 \mathcal{L})}}{\left(2 T_{1}\right)^{\left(81 n_{L}+162\right) \lambda / \mathcal{L}}} d \lambda \\
& (\operatorname{Proposition~4.8)} \\
= & \frac{2 c_{14} a}{T_{1}} t\left[\frac{t^{-162 / 325}}{\left(2 T_{1}\right)^{81 n_{L}+162}}+2\left(1-\frac{t^{-162 / 325}}{\left(2 T_{1}\right)^{81 n_{L}+162}}\right)\right] \\
\leq & \frac{6 c_{14}}{T_{1}} t(\text { for } 1<a<3 / 2) .
\end{aligned}
$$

Hence, we have
$\sum_{\chi} \sum_{\substack{\rho=\beta+i \gamma \\|\gamma|>T}}\left|k_{2}(\rho)\right| \leq \sum_{m=0}^{\infty} \sum_{\chi} \sum_{\substack{\rho=\beta+i \gamma \\ 2^{m} T \leq|\gamma| \leq 2^{m+1} T}}\left|k_{2}(\rho)\right| \leq 6 c_{14} t \sum_{m=0}^{\infty} \frac{1}{2^{m} T}=12 c_{14} \epsilon t$.
Lemma 4.10. Let $\epsilon>0, T:=\epsilon^{-1}$, and

$$
R:=\frac{\mathcal{L}}{29.57\left(\log d_{L}+n_{L} \log \left(\epsilon^{-1}+2\right)\right)}
$$

If d_{L} is sufficiently large and $t \geq e^{325 \mathcal{L}}$ we have

$$
\sum_{\chi} \sum_{\substack{\rho=\beta+i \gamma \\ 0<\beta \leq 1-R / \mathcal{L},|\gamma| \leq T}}\left|k_{2}(\rho)\right| \leq 2 \epsilon t .
$$

Proof. Note that $R \gg n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}}$ since $n_{L} \ll \log d_{L}$. Let $\rho=\beta+i \gamma$ with $\beta=1-\lambda / \mathcal{L}$ and $|\gamma| \leq T=\epsilon^{-1}$. Firstly, we have

$$
\begin{aligned}
& \sum_{\chi} \sum_{\substack{0, \beta+i \gamma \\
0<\beta \leq 1-R / \mathcal{L},|\gamma| \leq T,|\rho| \geq 1 / 2}}\left|k_{2}(\rho)\right| \\
\leq & 4 a t \int_{R}^{\mathcal{L}} t^{-\lambda / \mathcal{L}} d N\left(1-\lambda / \mathcal{L}, \epsilon^{-1}\right) \text { (point (iv) of Lemma 4.3) }
\end{aligned}
$$

$$
\begin{aligned}
& \leq 4 c_{14} a t\left[\frac{\left(\epsilon^{-1}\right)^{81 n_{L}+162}}{t^{163 / 325}}+\frac{\log t}{\mathcal{L}} \int_{R}^{\mathcal{L}} \frac{\left(\epsilon^{-1}\right)^{\left(81 n_{L}+162\right) \lambda / \mathcal{L}}}{t^{163 \lambda /(325 \mathcal{L})}} d \lambda\right] \\
& \leq 6 c_{14} t\left[\frac{\left(\epsilon^{-1}\right)^{81 n_{L}+162}}{t^{163 / 325}}+\frac{325 \log t}{163 \log t-325\left(81 n_{L}+162\right) \log \left(\epsilon^{-1}\right)} \frac{\left(\epsilon^{-1}\right)^{\left(81 n_{L}+162\right) R / \mathcal{L}}}{t^{163 R /(325 \mathcal{L})}}\right] \\
&\left(\text { for } 1<a<\frac{3}{2} \text { and } n_{L} \ll(\log t)^{1 /\left(\delta_{1}+\delta_{2}+1\right)}\right) .
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
& \frac{\left(\epsilon^{-1}\right)^{\left(81 n_{L}+162\right) R / \mathcal{L}}}{t^{163 R /(325 \mathcal{L})}} \\
= & \exp \left(-\frac{163 R \log t}{325 \mathcal{L}}+\frac{\left(81 n_{L}+162\right) R \log \left(\epsilon^{-1}\right)}{\mathcal{L}}\right) \\
\ll & \exp \left(-\frac{163 R \log t}{325 \mathcal{L}}\right)\left(\text { as } \frac{\left(81 n_{L}+162\right) R \log \left(\epsilon^{-1}\right)}{\mathcal{L}} \text { is bounded above }\right) \\
\leq & \exp \left(-c_{17} n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}}\right) \quad\left(\text { for } \log t \geq 325 \mathcal{L} \text { and } R \gg n_{L}^{\delta_{1}}\left(\log d_{L}\right)^{\delta_{2}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\left(\epsilon^{-1}\right)^{81 n_{L}+162}}{t^{163 / 325}=} & \exp \left(-\frac{163}{325} \log t+\left(81 n_{L}+162\right) \log \left(\epsilon^{-1}\right)\right) \\
\leq & \exp \left(-\frac{163}{325} \log t+c_{18} \log \left(\epsilon^{-1}\right)(\log t)^{1 /\left(\delta_{1}+\delta_{2}+1\right)}\right) \\
& \left(\text { for } n_{L} \ll(\log t)^{1 /\left(\delta_{1}+\delta_{2}+1\right)}\right)
\end{aligned}
$$

for some positive constants c_{17} and c_{18}. Hence, we have

$$
\sum_{\chi} \sum_{\substack{\rho=\beta+i \gamma \\ 0<\beta \leq 1-R / \mathcal{L},|\gamma| \leq T,|\rho| \geq 1 / 2}}\left|k_{2}(\rho)\right| \leq \epsilon t .
$$

Secondly, we have

$$
\begin{aligned}
\sum_{\chi} \sum_{\substack{\rho \\
|\rho| \leq 1 / 2}}\left|k_{2}(\rho)\right| & \ll t^{1 / 2} \log t \sum_{\chi} \sum_{\substack{|\rho| \leq 1 / 2}} 1(\text { point }(\mathrm{v}) \text { of Lemma 4.3) } \\
& \ll t^{1 / 2} \log t \log d_{L}\left(\text { Proposition } 3.1 \text { and } n_{L} \ll \log d_{L}\right) \\
& \ll \frac{(\log t)^{\left(2+\delta_{2}\right) /\left(1+\delta_{2}\right)}}{t^{1 / 2}} t\left(\text { for } \log d_{L} \ll(\log t)^{1 /\left(1+\delta_{2}\right)}\right) \\
& \leq \epsilon t .
\end{aligned}
$$

Thus the result follows.
Lemma 4.11. Let $\epsilon>0, T:=\epsilon^{-1}$, and

$$
R:=\frac{\mathcal{L}}{29.57\left(\log d_{L}+n_{L} \log \left(\epsilon^{-1}+2\right)\right)} .
$$

If d_{L} is sufficiently large and $t \geq e^{325 \mathcal{L}}$ we have

$$
\sum_{\chi} \sum_{\substack{\rho=\beta+\gamma, \gamma \\ 1-R / \mathcal{L}<\beta<1,|\gamma| \leq T}}\left|k_{2}(\rho)\right| \leq\left(1-\left(10+12 c_{14}\right) \epsilon\right) t .
$$

Proof. From Proposition 3.6 and the definition of R we have

$$
\sum_{\chi} \sum_{\substack{\rho=\beta+i \gamma \\ 1-R / \mathcal{L}<\beta<1,|\gamma| \leq T}}\left|k_{2}(\rho)\right|=0 \text { or } k_{2}\left(\beta_{0}\right) .
$$

Thus we have

$$
\sum_{\chi} \sum_{\substack{\rho=\beta+i \gamma \\ 1-R / \mathcal{L}<\beta<1,|\gamma| \leq T}}\left|k_{2}(\rho)\right| \leq k_{2}\left(\beta_{0}\right),
$$

where β_{0} is the exceptional real zero of $\zeta_{L}(s)$ such that $1-\beta_{0} \geq \mathcal{L}^{-1}$. Thus the result follows from the following inequality

$$
\begin{aligned}
\left|k_{2}\left(\beta_{0}\right)\right| & \leq 3 t^{\beta_{0}} \quad\left(\text { for } 1<a<3 / 2, \beta_{0}>1 / 2,\right. \text { and point (i) of Lemma 4.3) } \\
& =3 t \exp \left(-\left(1-\beta_{0}\right) \log t\right) \\
& \leq 3 e^{-325} t\left(\text { for }\left(1-\beta_{0}\right) \log t \geq 325\right) \\
& \leq\left(1-\left(10+12 c_{14}\right) \epsilon\right) t .
\end{aligned}
$$

Now we use the same ϵ in Lemmas 4.4, 4.6, 4.7, 4.9, 4.10, and 4.11. Gathering Lemmas 4.4, 4.6, 4.7, 4.9, 4.10, and 4.11 we obtain, for $t \geq e^{325 \mathcal{L}}$

$$
\left|\psi_{C}(t)-\frac{|C|}{|G|} t\right| \leq(1-\epsilon) \frac{|C|}{|G|} t
$$

provided that d_{L} is sufficiently large.

References

[1] J.-H. Ahn and S.-H. Kwon, Some explicit zero-free regions for Hecke L-functions, J. Number Theory 145 (2014), 433-473. https://doi.org/10.1016/j.jnt.2014.06.008
[2] J.-H. Ahn and S.-H. Kwon, An explicit upper bound for the least prime ideal in the Chebotarev density theorem, Ann. Inst. Fourier (Grenoble) 69 (2019), no. 3, 1411-1458.
[3] J.-H. Ahn and S.-H. Kwon, Lower estimates for the prime ideal of degree one counting function in the Chebotarev density theorem, Acta Arith. 191 (2019), no. 3, 289-307. https://doi.org/10.4064/aa180427-18-12
[4] S. Das, An explicit version of Chebotarev's density theorem, MSc Thesis, Dec. 2020.
[5] M. Deuring, Über den Tschebotareffschen Dichtigkeitssatz, Math. Ann. 110 (1935), no. 1, 414-415. https://doi.org/10.1007/BF01448036
[6] H. Kadiri, N. Ng, and P.-J. Wong, The least prime ideal in the Chebotarev density theorem, Proc. Amer. Math. Soc. 147 (2019), no. 6, 2289-2303. https://doi.org/10. 1090/proc/14384
[7] H. Kadiri and P. J. Wong, Primes in the Chebotarev density theorem for all number fields (with an Appendix by Andrew Fiori), to appear in Journal of Number Theory. https://doi.org/10.1016/j.jnt.2022.03.012
[8] J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), no. 3, 271-296. https: //doi.org/10.1007/BF01390234
[9] J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, in Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), 409-464, Academic Press, London, 1977.
[10] C. R. MacCluer, A reduction of the Čebotarev density theorem to the cyclic case, Acta Arith. 15 (1968), 45-47. https://doi.org/10.4064/aa-15-1-45-47
[11] J. Maynard, On the Brun-Titchmarsh theorem, Acta Arith. 157 (2013), no. 3, 249-296. https://doi.org/10.4064/aa157-3-3
[12] H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119 134. https://doi.org/10.1112/S0025579300004708
[13] H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152. https://doi.org/10.1007/BF01405166
[14] J. Thorner and A. Zaman, An explicit bound for the least prime ideal in the Chebotarev density theorem, Algebra Number Theory 11 (2017), no. 5, 1135-1197. https://doi. org/10.2140/ant.2017.11.1135
[15] J. Thorner and A. Zaman, A Chebotarev variant of the Brun-Titchmarsh theorem and bounds for the Lang-Trotter conjectures, Int. Math. Res. Not. IMRN 2018 (2018), no. 16, 4991-5027. https://doi.org/10.1093/imrn/rnx031
[16] N. Tschebotareff, Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören, Math. Ann. 95 (1926), no. 1, 191-228. https://doi.org/10.1007/BF01206606
[17] A. Weiss, The least prime ideal, J. Reine Angew. Math. 338 (1983), 56-94. https: //doi.org/10.1515/crll.1983.338.56
[18] B. Winckler, Théorème de Chebotarev effectif, arXiv:1311.5715v1 [math.NT] 22 Nov. 2013.
[19] B. Winckler, Intersection arithmétique et problème de Lehmer elliptique, Thèse, Université de Bordeaux, 2015.
[20] A. A. Zaman, Analytic estimates for the Chebotarev density theorem and their applications, Ph.D. thesis, Uinversity of Toronto, 2017.

Jeoung-Hwan Ahn
Institute of Basic Science
Korea University
02841 Seoul, Korea
Email address: jh-ahn@korea.ac.kr
Soun-Hi Kwon
Department of Mathematics Education
Korea University
02841 Seoul, Korea
Email address: sounhikwon@korea.ac.kr

[^0]: Received June 22, 2021; Revised June 22, 2022; Accepted June 28, 2022.
 2020 Mathematics Subject Classification. Primary 11R44, 11R42, 11M41; Secondary 11R45.

 Key words and phrases. The Chebotarev density theorem, the Deuring-Heilbronn phenomenon, the Brun-Titchmarsh theorem.

 The first author was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(NRF2020R1I1A1A01069868) and a Korea University Grant. The second author was supported by NRF-2019R1A2C1002786 and the College of Education, Korea University Grant.

