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SPECTRAL DECOMPOSITION FOR HOMEOMORPHISMS

ON NON-METRIZABLE TOTALLY DISCONNECTED SPACES

Jumi Oh

Abstract. We introduce the notions of symbolic expansivity and sym-

bolic shadowing for homeomorphisms on non-metrizable compact spaces
which are generalizations of expansivity and shadowing, respectively, for

metric spaces. The main result is to generalize the Smale’s spectral de-
composition theorem to symbolically expansive homeomorphisms with

symbolic shadowing on non-metrizable compact Hausdorff totally discon-

nected spaces.

1. Introduction

The famous spectral decomposition theorem by Smale [6] says that the non-
wandering set Ω(f) of an Axiom A diffeomorphism f on a compact C∞ man-
ifold can be decomposed as a finite union of disjoint closed invariant sets on
which f is topologically transitive. In the case, we say that f has the spectral
decomposition.

Aoki [1] extended the result to homeomorphisms on compact metric spaces
as follows: if f is an expansive homeomorphism with shadowing on a compact
metric space, then f has the spectral decomposition. Afterwards, there are
many works that generalize the Smale’s spectral decomposition theorem to
more general settings. For example, to multi dynamical systems (e.g. [5]), to
homeomorphisms on non compact spaces (e.g. [4]), and to homeomorphisms
with measure expansivity and measure shadowing (e.g. [3]).

Recently, Good and Meddaugh [2] introduced a notion of shadowing for
homeomorphisms f on compact Hausdorff spaces, and showed that f has the
shadowing if and only if the system is conjugate the inverse limit of directed
systems satisfying the Mittag-Leffler condition and consisting of shifts of finite
type. More precisely, let X be a compact Hausdorff space, and FO(X) denote
the collection of all finite open covering of X. Let f be a homeomorphism on
X. For β ∈ FO(X), a sequence {xi}i∈Z is called a β-pseudo orbit of f if for
any i ∈ Z, f(xi), xi+1 ∈ U for some U ∈ β. We say that f has the shadowing
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property if for any α ∈ FO(X), there is β ∈ FO(X) such that β � α and any
β-pseudo orbit {xi}i∈Z can be α-shadowed by a point in X, i.e., there is y ∈ X
such that for any i ∈ Z, f i(y), xi ∈ U for some U ∈ α (see Definition 5 in [2]).

In this paper, we introduce another types of expansivity (called symbolic
expansivity) and shadowing (called symbolic shadowing) for homeomorphisms
on non-metrizable compact spaces which are generalizations of usual expansiv-
ity and usual shadowing, respectively, for metric spaces. Then we extend the
Smale’s spectral decomposition theorem to symbolically expansive homeomor-
phisms with symbolic shadowing as follows.

Main Theorem. If a homeomorphism f on a non-metrizable compact Haus-
dorff totally disconnected space X is symbolically expansive and has symbolic
shadowing, then f has the spectral decomposition, i.e., the nonwandering set
Ω(f) is decomposed by a disjoint union of finitely many invariant and closed
subsets

Ω(f) = Ω1 ∪ Ω2 ∪ · · · ∪ Ωn

such that f is topologically transitive on each Ωi for 1 ≤ i ≤ n.

2. Symbolic shadowing

In this section, we study the symbolic shadowing of homeomorphisms on
compact totally disconnected spaces. Precisely, we prove that if a homeomor-
phism f has the symbolic shadowing, then its restriction on nonwandering set
has the symbolic shadowing. First, we introduce some definitions and nota-
tions.

Let X be a non-metrizable compact Hausdorff totally disconnected space X.
A finite collection ε = {U1, . . . , Un} consisting of open subsets of X is called as
an open partition if Ui’s are pairwise disjoint and

⋃n
i=1 Ui = X. We denote by

P(X) the collection of all finite open partitions of X. We note that P(X) is
nonempty. For any α, β ∈ P(X), we say that α is a refinement of β, (denoted
by α � β), if for any U ∈ α there exists V ∈ β such that U ⊂ V .

First of all, we can check the basic property of refinement from the following
lemma.

Lemma 2.1. Let f : X → X be a homeomorphism. For any ε ∈ P(X), there
exists δ ∈ P(X) such that f(δ(x)) ⊂ ε(f(x)) for all x ∈ X.

Proof. Let ε = {A1, A2, . . . , An} and Bij = f−1(Ai) ∩Aj for 1 ≤ i, j ≤ n. Put
Λ = {(i, j) : Bij 6= ∅ for 1 ≤ i, j ≤ n}, we consider δ = {Bij : (i, j) ∈ Λ}. Then
δ satisfies that δ covers X, and δ � ε. We check it as follows.

First, δ covers X. For any x ∈ X, let x ∈ Aj and f(x) ∈ Ai for some
1 ≤ i, j ≤ n. That is, x ∈ f−1(Ai) ∩ Aj = Bij ∈ δ. And it satisfies either
Bij ∩ Bkl = ∅ or Bij = Bkl for some (k, l) ∈ Λ. Suppose that Bij ∩ Bkl 6= ∅.
Then

x ∈ Bij ∩Bkl = (f−1(Ai) ∩Aj) ∩ (f−1(Ak) ∩Al).
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This means that x ∈ Aj ∩Al and x ∈ f−1(Ai) ∩ f−1(Ak). So, f(x) ∈ Ai ∩Ak,
we can see that i = k and j = l. Thus, Bij = Bkl.

Second, δ ∈ P(X), δ � ε. For any x ∈ X, δ(x) = Bij for some (i, j) ∈ Λ.
Since Bij = f−1(Ai) ∩Aj ,

f(x) ∈ f(δ(x)) ⊂ Ai ∩ f(Aj) ⊂ Ai = ε(f(x)). �

We say that a point x ∈ X is periodic if fn(x) = x for some n ∈ Z \ {0},
denote by Per(f) the set of all periodic points of f . A point x ∈ X is called
nonwandering if for any neighborhood U of x, there is n > 0 such that fn(U)∩
U 6= ∅. The set of all nonwandering points of f is called the nonwandering set
of f , denoted by Ω(f).

A sequence ξ = {x0, . . . , xn} is called an ε-chain of f (ε ∈ P(X)) from x to
y (x, y ∈ X) if f(xi) ∈ ε(xi+1) for all 0 ≤ i ≤ n− 1, and x0 = x and xn = y. A
point x ∈ X is called chain recurrent if for any ε ∈ P(X), there is an ε-chain
ξ = {xi}ni=0 from x to itself. The set of all chain recurrent points of f is called
the chain recurrent of f , and denote it by CR(f). We see that CR(f) is closed
and invariant.

For any x, y ∈ CR(f) and ε ∈ P(X), we say that x∼εy if there are an
ε-chain from x to y and an ε-chain from y to x. We define x ∼ y whenever
x ∼ε y for any ε ∈ P(X). It is clear that ∼ is an equivalence relation on the
set CR(f) and we call an equivalence class of ∼ by a chain component of f .
We see that any chain component of f is closed and invariant.

A sequence ξ = {xi}i∈Z is called a δ-pseudo orbit of f if f(xi) ∈ δ(xi) for
all i ∈ Z. A δ-pseudo orbit is said to be ε-shadowed by x ∈ X if f i(x) ∈ ε(xi)
for all i ∈ Z.

Definition. We say that f has the symbolic shadowing if for all ε ∈ P(X)
there exists δ ∈ P(X) with δ � ε such that every δ-pseudo orbit ξ = {xi} is
ε-shadowed by a point in X.

We observe that the notion of symbolic shadowing on totally disconnected
space is equivalent to one introduced by Good and Meddaugh, see Lemma 15
in [2].

Now we consider the symbolic shadowing on Ω(f) and CR(f).

Lemma 2.2. Let f be a homeomorphism on X. Then Ω(f) ⊂ CR(f). More-
over, if f has the symbolic shadowing, then Ω(f) = CR(f).

Proof. We first show that Ω(f) ⊂ CR(f). Let x ∈ Ω(f) and ε ∈ P(X) be
arbitrary. Choose δ ∈ P(X) with δ � ε such that f(δ(x)) ⊂ ε(f(x)) for all
x ∈ X. Since x ∈ Ω(f) there exists n ∈ N such that fn(δ(x))∩ δ(x) 6= ∅. That
is, there is y ∈ δ(x) satisfying fn(y) ∈ δ(x). Then we can see an ε-chain

ξ = {x0 = x, f(y), f2(y), . . . , fn−1(y), xn = x}
from x to x. It satisfies that f(xi) ∈ ε(xi+1) for i = 0, 1, 2, . . . , n − 1. More
precisely, we can check that f(x) ∈ ε(x1) = ε(f(y)). Since y ∈ δ(x) and
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x ∈ δ(y) = δ(f(x)), f(x) ∈ f(δ(y)) ⊂ ε(f(y)). Also, f(xn−1) = fn(y) ∈
δ(x) ⊂ ε(x). Therefore, x ∈ CR(f).

Moreover, suppose that f has the symbolic shadowing on X. For any x ∈
CR(f) and any neighborhood U of x, choose ε ∈ P(X) such that ε(x) ⊂ U .
Since f has the symbolic shadowing, there is δ ∈ P(X) such that every δ-chain
can be ε-shadowed. Since x ∈ CR(f) and given δ ∈ P(X), there is a δ-chain

ξ = {x = x0, x1, . . . , xn−1, xn = x}
from x to itself. Then there is y ∈ X such that f i(y) ∈ ε(xi) for all i =
0, 1, . . . , n − 1. Since y ∈ ε(x) ⊂ U and fn(y) ∈ ε(x) ⊂ U , these imply that
fn(y) ∈ U ∩ fn(U) 6= ∅. Therefore, x ∈ Ω(f). �

Now let Cε(x) = {y ∈ CR(f) : y ∼ε x} be the ε-chain component for f .
Then we can see that it is f -invariant following lemma.

Lemma 2.3. For any x ∈ CR(f), any ε ∈ P(X), Cε(x) is f -invariant.

Proof. Let y ∈ Cε(x). First, we will show that f(y) ∈ Cε(x) and only if
f(y) ∼ε x. For given ε ∈ P(X) since y ∈ Cε(x), there exist ε-chains

{x = x0, x1, x2, . . . , xn = y} : from x to y,

{y = y0, y1, y2, . . . , ym = x} : from y to x.

Since f(y1) ∈ ε(y2), ε(f(y1)) = ε(y2) and f(f(x)) ∈ ε(f(y1)) = ε(y2). Hence
it is easy to see that two ε-chains

{x, x1, . . . , xm = y, f(y)} : from x to f(y),

{f(y), y2, y3, . . . , ym = x} : from f(y) to x.

So, f(y) ∼ε x.
Now, let C̄ε(x) be the ε-chain component of f−1. By the first fact of that,

f−1(C̄ε(x)) ⊂ C̄ε(x). We will show that C̄ε(x) = Cε(x).
At first, Cε(x) ⊂ C̄ε(x), i.e., if y ∈ Cε(x), then y ∈ C̄ε(x). For any ε ∈ P(X)

since y ∈ Cε(x), there exist ε-chains

{y = y0, . . . , yn = x} satisfying f(yi) ∈ ε(yi+1),

{x = z0, . . . , zm = y} satisfying f(zi) ∈ ε(zi+1).

Then we have that yi ∈ ε(f−1(yi+1)) and zi ∈ ε(f−1(zi+1)). Thus, we can get
that {x = yn, yn−1, yn−2, . . . , y2, y1, y0 = y} is an ε-chain of f−1 from x to y.

And second, C̄ε(x) ⊂ Cε(x), i.e., if y ∈ C̄ε(x), then y ∈ Cε(x). For any
ε ∈ P(X) since y ∈ C̄ε(x), there exist ε-chains

{y = y0, . . . , yn = x} satisfying f−1(yi) ∈ ε(yi+1),

{x = z0, . . . , zm = y} satisfying f−1(zi) ∈ ε(zi+1).

Then yi ∈ f(ε(yi+1)) = ε(f(yi+1)), we have that {yn = x, yn−1, . . . , y1, y0 = y}
is an ε-chain from y to x. Similarly, {zm = y, . . . , z0 = x} is an ε-chain from y
to x. So, y ∼ε x under f . Therefore, Cε(x) is f -invariant. �
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Lemma 2.4. For any ε ∈ P(X), there exists δ ∈ P(X) such that CR(f) ∩
δ(x) ⊂ Cε(x) for all x ∈ CR(f).

Proof. Let y ∈ CR(f) ∩ δ(x) and δ be as before. We show that x ∼ε y.
Since y ∈ CR(f), there is a δ-chain {y = y0, y1, . . . , ym = y} from y to itself.

Since x ∈ δ(x), we have

f(x) ∈ f(δ(x)) ⊂ ε(f(x)) = ε(y1).

Then we get an ε-chain {x, y1, y2, . . . , ym = y} from x to y.
Similarly, since x ∈ CR(f), there is a δ-chain {x = x0, x1, . . . , xn = x}.

Because f(y) ∈ ε(x1), we can construct an ε-chain {y, x1, . . . , xn = x} from y
to x. Since

f(y) ∈ f(δ(x)) ⊂ ε(f(x)) = ε(x1),

y ∈ Cε(x). �

Lemma 2.5. For any ε ∈ P(X), there exists δ ∈ P(X) such that any δ-chain
in CR(f) is contained in a common ε-chain component of f .

Proof. For ε ∈ P(X), we take δ ∈ P(X) corresponding to ε by Lemma 2.4.
Let x ∈ CR(f) and Cε(x) be the ε-chain component containing x, and

Uδ =
⋃

y∈Cε(x)

(CR(f) ∩ δ(y)).

By Lemma 2.4, we see that Uδ = Cε(x), and so Cε(x) is open in CR(f).
Moreover, let ξ = {x0, x1, . . . , xn} be a δ-chain in CR(f). Since Cε(x0) is

f -invariant, we have f(x0) ∈ Cε(x0). Moreover, since ξ is a δ-chain of f , we
see that

x1 ∈ δ(f(x0)) ∩ CR(f) ⊂ Uδ = Cε(x0).

Then Cε(x0) = Cε(x1). Continue the process, we derive that ξ ⊂ Cε(x0). �

We say that f : X → X has the finite symbolic shadowing if for given
ε ∈ P(X), there exists δ ∈ P(X) such that if for a set {x0, x1, . . . , xm} ⊂ Y
satisfying that f(xk) ∈ δ(xk+1), 0 ≤ k ≤ m− 1, then there is x ∈ X such that
fk(x) ∈ ε(xk), 0 ≤ k ≤ m− 1.

Lemma 2.6. A homeomorphism f : X → X has the finite symbolic shadowing
if and only if it has the symbolic shadowing.

Proof. It is clear that if f has the symbolic shadowing, then it has the finite
symbolic shadowing. Suppose that f has the finite symbolic shadowing. It is
enough to show that f has the symbolic shadowing.

Let ε ∈ P(X) and take δ ∈ P(X) corresponding to ε by the finite symbolic
shadowing of f . Let ξ = {xk : k ∈ Z} be a δ-pseudo orbit of f . Fix m > 0 and
set xk

′ = xk−m for all k ∈ Z. We consider

{x′0, x′1, . . . , x′2m} = {x−m, x−m+1, . . . , x−m+k, . . . , x−m+2m}.
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Since f has the finite symbolic shadowing, there exists ym ∈ X such that
fk(ym) ∈ ε(x′k), 0 ≤ k ≤ 2m. Put zm = fm(ym) then fk(zm) ∈ ε(xk), −m ≤
k ≤ m. Let zm → z then we can see that

fk(z) ∈ ε(xk), ∀k ∈ Z.

This means that ξ is ε-shadowed by z. Therefore, f has the symbolic shadowing.
�

Theorem 2.7. If f : X → X has the symbolic shadowing, then f |Ω(f) : Ω(f)→
Ω(f) has the symbolic shadowing.

Proof. By Lemma 2.6, it is enough to show that if f has the symbolic shadow-
ing, then its restriction f |Ω(f) : Ω(f)→ Ω(f) has the finite symbolic shadowing.

For any ε ∈ P(X), choose γ ∈ P(X) such that every γ-chain in X is ε-
shadowed by a point in X. By Lemma 2.2, we have CR(f) = Ω(f). For
γ ∈ P(X) with γ � δ, take δ ∈ P(X) such that if ξ = {x0, x1, x2, . . . , xn}
is a finite δ-chain in Ω(f), then it is contained in one γ-chain component by
Lemma 2.5. That is, ξ ⊂ Cγ(x0).

Let ξ = {x0, x1, . . . , xk} be a δ-chain in Ω(f). Since xk, x0 ∈ Cγ(x0), there
exists a γ-chain {xk, xk+1, . . . , xn−1, xn = x0} from xk to x0. Consider periodic
γ-chain

{x0, x1, . . . , xk, xk+1, xk+2, . . . , xn = x0, x1, . . . , xn, . . .} = {yi}i∈Z.

Since f has the symbolic shadowing, there exists y ∈ X such that f i(y) ∈
ε(yi+1) for all i ∈ Z. Then we have

fn(y) ∈ ε(x0), f2n(y) ∈ ε(x0), . . . , f in(y) ∈ ε(x0)

for all i ∈ Z.
Since ε(x0) is compact, there is a convergent subsequence of {f in(y) : i ∈ N}.

We assume that fnj (y)→ z ∈ ε(x0). Note that z ∈ Ω(f).
Now we show that z ∈ Ω(f) is an ε-shadowing point of {x0, x1, . . . , xk}. In

fact, since ε(xi) is closed in X for all 0 ≤ i ≤ k, we have

fnj+1(y) = f(fnj (y)) −→ f(z) ∈ ε(x1),

...

fnj+k(y) = fk(fnj (y)) −→ fk(z) ∈ ε(xk).

Then we get that

f(z) ∈ ε(x1), f2(z) ∈ ε(x2), . . . , fk(z) ∈ ε(xk).

This means that z is an ε-shadowing point of {x0, x1, . . . , xk}. Therefore, f
has the finite symbolic shadowing on Ω(f). �
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3. Proof of Main Theorem

In this section, we prove the spectral decomposition theorem for symbolic
expansive homeomorphisms with symbolic shadowing on compact totally dis-
connected spaces. More precisely, we show that if a homeomorphism f on a
compact totally disconnected space is symbolically expansive and has the sym-
bolic shadowing, then it has the spectral decomposition, i.e., the nonwandering
Ω(f) can be decomposed as a finite union of disjoint closed invariant sets on
which f is topologically transitive. For this, we first introduce the notion of
symbolic expansivity for f .

Definition. We say that f is symbolically expansive if there is ε ∈ P(X) such
that Γε(x) = {x} for all x ∈ X, where

Γε(x) = {y ∈ X : f i(y) ∈ ε(f i(x)) for all i ∈ Z}.

Here, ε is called an expansive partition.

To prove Main Theorem, we need several lemmas.

Lemma 3.1. Let f be a symbolically expansive homeomorphism on X with an
expansive partition ε. If

fn(y) ∈ ε(fn(x)) ∀n ≥ 0, [resp. ∀n ≤ 0]

for some x, y ∈ X, then for any δ � ε, there exists N > 0 such that fn(y) ∈
δ(fn(x)) for ∀n ≥ N [resp. n ≥ −N ].

Proof. Suppose by contradiction that there exist x 6= y ∈ X and δ � ε such
that

fn(y) ∈ ε(fn(x)), ∀n ≥ N,(i)

∀k ∈ N, ∃nk ∈ N such that fnk(y) /∈ δ(fnk(x)).(ii)

Let fnk(y)→ y0 ∈ X and fnk(x)→ x0 ∈ X as k →∞.
Assume that y0 ∈ δ(x0) is a neighborhood of y0 and a neighborhood of x0.

Then there is nk such that fnk(y) ∈ δ(x0) = δ(fnk(x)) and fnk(x) ∈ δ(x0) =
δ(fnk(x)). This is a contradiction by (ii). So, we have y0 /∈ δ(x0), i.e., x0 6= y0.
On the other hand, for all n ∈ Z,

fn(y0) = fn( lim
k→∞

fnk(y)) = lim
k→∞

(fn+nk(y)) ∈ ε(fn+nk(x)) if nk > n by (i)

= ε(fn(fnk(x)))

= ε(fn(x0)).

So, fn(y0) ∈ ε(fn(x0)). Since f is symbolically expansive, x0 = y0. This
contradiction completes the proof of the lemma. �

Lemma 3.2. If f is symbolically expansive and has the symbolic shadowing,
then CR(f) = Per(f).
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Proof. Let x ∈ CR(f), ε be an expansive partition of f . For any neighborhood
U of x, there exists a refinement γ ∈ P(X) of ε such that γ(x) ⊂ U . In fact,
we can consider γ as following

γ ={U ∩ E : E ∈ ε and U ∩ E 6= ∅}
∪ {E − U : E ∈ ε and U ∩ E 6= ∅}
∪ {E : E ∈ ε and U ∩ E = ∅}.

Since f has the symbolic shadowing, there is a partition δ ∈ P(X) such that
every δ-chain ξ = {xi}i∈Z is γ-shadowed by a point in X. As x ∈ CR(f), there
is a δ-chain ξ = {x0 = x, x1, x2, . . . , xn = x} of f . We extend it to a δ-pseudo
orbit through x by letting xi = xi+kn for all k ∈ Z and 0 ≤ i ≤ n− 1. By the
symbolic shadowing of f , there is y ∈ X such that f i(y) ∈ γ(xi) for all i ∈ Z.
Then we see that

f i+n(y) ∈ γ(xi+n) = γ(xi) = γ(f i(y)), ∀i ∈ Z,

and so fn(y) ∈ Γγ(y). Since f is symbolically expansive, we get fn(y) = y. It

implies that y is periodic and y ∈ γ(x) ⊂ U . Therefore, x ∈ Per(f). �

End of proof of Main Theorem.

Step 1. If f is symbolically expansive and symbolic shadowing, then every
chain component of f is open in Ω(f).

Proof. Let C ∈ P(X) be an expansive partition of f . Take δ ∈ P(X) with
δ � C by the definition of the symbolic shadowing property. Since f |Ω(f) :
Ω(f) → Ω(f) has the symbolic shadowing, it follows that Ω(f) splits into the
equivalence classes of Ω(f) under the relation “∼” as Ω(f) =

⋃
λ∈Λ

Ωλ.

For each λ ∈ Λ, let

Uλ =
⋃
x∈Ωλ

(δ(x) ∩ Ω(f)).

Then Uλ is open in Ω(f), that is, δ(x) ∩ Ω(f) is open in Ω(f).
To show that Ωλ is open in Ω(f), it is enough to show that Uλ = Ωλ. Clearly

Ωλ ⊂ Uλ, we will prove that Uλ ⊂ Ωλ by the following two items.
(i) Uλ ∩ Per(f) ⊂ Ωλ, i.e., for all y ∈ Uλ ∩ Per(f) then there exists x ∈ Ωλ

such that y ∈ δ(x). We will prove that for all ε ∈ P(X) (ε � δ), x ∼ε y.

Since x ∈ Ωλ ⊂ Per(f), there exists a sequence {pn} ∈ Per(f) such that
pn → x. And there is p ∈ Per(f) such that{

p ∈ ε(x) ⊂ δ(x) = δ(y),
f(p) ∈ ε(f(x)).

Then {x, f(p), f2(p), . . . , fπ(p)(p) = p} is an ε-chain x to p, where π(p) is a
period of p. Also, {p, f(p), f2(p), . . . , fπ(p)−1(p), x} is an ε-chain p to x. Hence
p ∼ε x.
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For any ε � δ � C, construct a δ-chain in Ω(f) through p and y. Define

xn =

{
fn(y), if n ≥ 0,
fn(p), if n < 0.

Then {xn}n∈Z is a δ-chain, it satisfies that p = f(x−1) ∈ δ(x0) = δ(y). By
symbolic shadowing, there exists z ∈ Ω(f) such that f i(z) ∈ C(xi), ∀i ∈ Z.

For any ε � C, by Lemma 3.1,

∃ N1 > 0 such that if n ≥ N1, then fn(z) ∈ ε(fn(y)),

∃ N2 < 0 such that if n ≤ N2, then fn(z) ∈ ε(fn(p)).

Put k = max{|N1|, |N2|}+ 1,

ξ = {p = f−kπ(p)(p), f−kπ(p)+1(z), f−kπ(p)+2(z), . . . , fπ(y)−1(y), y}

is an ε-chain from p to y. And f−kπ(p)+1(p) ∈ ε(f−kπ(p)+1(z)).
Similarly, we can construct a δ-chain in Ω(f). Define

x̃m =

{
fm(p), if m ≥ 0,
fm(y), if m < 0.

Then {x̃m}m∈Z is a δ-chain, it satisfies that y = f(x̃−1) ∈ δ(x̃0) = δ(p). By
the symbolic shadowing, there is z̄ ∈ Ω(f) such that f j(z̄) ∈ C(x̃j), ∀j ∈ Z.

For any ε � C, by Lemma 3.1,

∃M1 > 0 such that if m ≥M1, then fm(z̄) ∈ ε(fm(p)),

∃M2 < 0 such that if m ≤M2, then fm(z̄) ∈ ε(fm(y)).

Put l = max{|M1|, |M2|}+ 1,

ξ̄ = {y = f−lπ(y)(y), f−lπ(y)+1(z̄), f−lπ(y)+2(z̄), . . . , fπ(p)−1(p), p}

is an ε-chain from y to p. And f−lπ(y)+1(y) ∈ ε(f−lπ(y)+1(z̄)). So, x̄i is an
ε-chain from y to p. Therefore, we can see that x ∼ε p ∼ε y.

(ii) We can easily see that Uλ = Uλ ∩ Per(f) by the definition of Uλ. Let

y ∈ Uλ ∩ Per(f) then there exists a sequence {pn} ∈ Per(f) such that pn
converges to y ∈ Ωλ for large n and {pn} ∈ Uλ. So,

pn → y ∈ Uλ = Uλ ∩ Per(f) ⊂ Uλ ∩ Per(f) ⊂ Ωλ = Ωλ.

Therefore, we conclude that Uλ = Ωλ, that is, Ωλ is open in Ω(f). �

Step 2. If f |Ω(f) : Ω(f)→ Ω(f) has the symbolic shadowing, then Ω(f) splits
into the equivalence classes Ωλ (∀λ ∈ Λ) under the relation ∼. Since X is
compact, Ωλ’s are finite,

Ω(f) = Ω1 ∪̇Ω2 ∪̇ · · · ∪̇Ωn.

That is, Ωλ is open and f -invariant, and Ω(f) =
⋃
λ∈Λ Ωλ.
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Finally, we ready to complete the proof of Main Theorem, it is enough to check
(iii) f is topologically transitive on each Ωi.

(iii) Let ε ∈ P(X) be an expansive partition. We are going to show that for
any nonempty open sets U, V ⊂ Ωi, there exists n ∈ N such that fn(U)∩V 6= ∅.
Choose x ∈ U, y ∈ V . Take a partition γ ∈ P(X) and γ � ε such that

∀W ∈ γ with W ∩ U 6= ∅, W ⊂ U,
∀W ∈ γ with W ∩ V 6= ∅, W ⊂ V.

By the symbolic shadowing, there exists δ ∈ P(X) (δ � γ) such that every
δ-chain in Ωi ⊂ Ω(f) is γ-shadowed by a point z in Ω(f) by Lemma 2.7.

Since x, y ∈ Ωi, there is a δ-chain ξ = {x = x0, x1, . . . , xn = y} such that

· δ(x0) ∩ U 6= ∅ ⇒ δ(x0) ⊂ U ,
· z ∈ δ(x0) ⊂ U ⇒ δ(x0) ∩ U 6= ∅ ⇒ z ∈ U ⇒ fn(z) ∈ fn(U),
· fn(z) ∈ δ(y) ∩ V 6= ∅ ⇒ δ(y) ⊂ V ⇒ fn(z) ∈ V .

So, we can see that fn(z) ∈ fn(U) ∩ V 6= ∅. Therefore, f is topologically
transitive.
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