DOI QR코드

DOI QR Code

Genetic Diversity of Epicoccum nigrum and its Effects on Fusarium graminearum

  • Taiying Li (Department of Applied Biology, Dong-A University) ;
  • Jihyeon Im (Department of Applied Biology, Dong-A University) ;
  • Jungkwan Lee (Department of Applied Biology, Dong-A University)
  • 투고 : 2022.09.06
  • 심사 : 2022.11.12
  • 발행 : 2022.12.31

초록

Epicoccum nigrum is a saprophytic or endophytic fungus that is found worldwide. Because of the antagonist effects of E. nigrum on many plant pathogens, current studies on E. nigrum have focused on the development of biological control agents and the utilization of its various metabolites. In this study, E. nigrum was collected from a wheat field, and its genetic diversity was analyzed. Phylogenetic analyses identified 63 isolates of E. nigrum divided into seven groups, indicating a wide genetic diversity. Isolates antagonized the wheat pathogen Fusarium graminearum, and reduced disease symptoms caused by F. graminearum in wheat coleoptiles. Moreover, pretreatment of wheat coleoptiles with E. nigrum induced the upregulation of pathogen-related (PR) genes, PR1, PR2, PR3, PR5, PR9, and PR10 in wheat coleoptiles responding to F. graminearum invasion. Overall, this study indicates that E. nigrum isolates can be used as biological pathogen inhibitors applied in wheat fields.

키워드

과제정보

This work was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education [2020R1A2C2013617, 2020R1A6A1A03047729] and the Green Fusion Technology Program funded by the Ministry of Environment, Republic of Korea.

참고문헌

  1. Favaro LCL, Melo FL, Aguilar-Vildoso CI, et al. Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. PLOS One. 2011;6(8):e14828.
  2. Taguiam JD, Evallo E, Balendres MA. Epicoccum species: ubiquitous plant pathogens and effective biological control agents. Eur J Plant Pathol. 2021;159(4):713-725. https://doi.org/10.1007/s10658-021-02207-w
  3. Zhou T, Reeleder RD. Application of Epicoccum purpurascens spores to control white mold of snap bean. Plant Dis. 1989;73(8):639-642. https://doi.org/10.1094/PD-73-0639
  4. Koutb M, Ali EH. Potential of Epicoccum purpurascens strain 5615 AUMC as a biocontrol agent of Pythium irregulare root rot in three leguminous plants. Mycobiology. 2010;38(4):286-294. https://doi.org/10.4489/MYCO.2010.38.4.286
  5. Braga RM, Padilla G, Araujo WL. The biotechnological potential of Epicoccum spp.: diversity of secondary metabolites. Crit Rev Microbiol. 2018;44(6):759-778. https://doi.org/10.1080/1040841X.2018.1514364
  6. Favaro LCL, Sebastianes FLS, Araujo WL. Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLOS One. 2012;7(6):e36826.
  7. Arnold AE. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev. 2007;21(2-3):51-66. https://doi.org/10.1016/j.fbr.2007.05.003
  8. Perello A, Simon MR, Arambarri AM. Interactions between foliar pathogens and the saprophytic microflora of the wheat (Triticum aestivum L.) phylloplane. J Phytopathol. 2002;150(4-5):232-243. https://doi.org/10.1046/j.1439-0434.2002.00747.x
  9. Larran S, Perello A, Simon MR, et al. The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol. 2007;23(4):565-572. https://doi.org/10.1007/s11274-006-9266-6
  10. Boedi S, Berger H, Sieber C, et al. Comparison of Fusarium graminearum transcriptomes on living or dead wheat differentiates substrate-responsive and defense-responsive genes. Front Microbiol. 2016;7:1113.
  11. Yang F, Jacobsen S, Jorgensen HJ, et al. Fusarium graminearum and its interactions with cereal heads: studies in the proteomics era. Front Plant Sci. 2013;4:37.
  12. Khanal R, Choo TM, Xue AG, et al. Response of barley genotypes to Fusarium head blight under natural infection and artificial inoculation conditions. Plant Pathol J. 2021;37(5):455-464. https://doi.org/10.5423/PPJ.OA.06.2021.0094
  13. Leslie JF, Summerell BA, Bullock S. The Fusarium laboratory manual. Ames (IA): Blackwell Publising; 2006.
  14. Yang J-W, Kim J-Y, Lee M-R, et al. Identification and chemotype profiling of Fusarium head blight disease in triticale. Res Plant Dis. 2021;27(4):172-179. https://doi.org/10.5423/RPD.2021.27.4.172
  15. Jensen BD, Knorr K, Nicolaisen M. In vitro competition between Fusarium graminearum and Epicoccum nigrum on media and wheat grains. Eur J Plant Pathol. 2016;146(3):657-670. https://doi.org/10.1007/s10658-016-0950-6
  16. Abdallah MF, De Boevre M, Landschoot S, et al. Fungal endophytes control Fusarium graminearum and reduce trichothecenes and zearalenone in maize. Toxins. 2018;10(12):493.
  17. Mohamed AH, Abd El-Megeed FH, Hassanein NM, et al. Native rhizospheric and endophytic fungi as sustainable sources of plant growth promoting traits to improve wheat growth under low nitrogen input. J Fungi. 2022;8(2):94.
  18. Sujatha HS, Murali M, Amruthesh KN. Fungal endophytes as growth promoters and inducers of resistance in tomato (Lycopersicon esculentum Mill.) against Alternaria solani. Int J Life Sci Pharma Res. 2021;11:227-235.
  19. Rajini SB, Nandhini M, Udayashankar AC, et al. Diversity, plant growth-promoting traits, and biocontrol potential of fungal endophytes of Sorghum bicolor. Plant Pathol. 2020;69(4):642-654. https://doi.org/10.1111/ppa.13151
  20. Larena I, Melgarejo P. Development of a new strategy for monitoring Epicoccum nigrum 282, a biological control agent used against brown rot caused by Monilinia spp. in peaches. Postharvest Biol Tec. 2009;54(2):63-71. https://doi.org/10.1016/j.postharvbio.2009.05.007
  21. Sulaiman IM, Jacobs E, Simpson S. Application of ribosomal internal transcribed spacer 1, internal transcribed spacer 2, and large-subunit D1-D2 regions as the genetic markers to identify fungi isolated from different environmental samples: a molecular surveillance study of public health importance. J AOAC Int. 2020;103(3):843-850. https://doi.org/10.1093/jaocint/qsz012
  22. Mwamula AO, Kim Y, Kim YH, et al. Molecular characterization of Filenchus cylindricus (Thorne & Malek, 1968) Niblack & Bernard, 1985 (Tylenchida: Tylenchidae) from Korea, with comments on its morphology. Plant Pathol J. 2022;38(4):323-333. https://doi.org/10.5423/PPJ.OA.02.2022.0020
  23. Raja HA, Miller AN, Pearce CJ, et al. Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod. 2017;80(3):756-770. https://doi.org/10.1021/acs.jnatprod.6b01085
  24. Zhang S, Zhang YJ, Liu XZ, et al. On the reliability of DNA sequences of Ophiocordyceps sinensis in public databases. J Ind Microbiol Biotechnol. 2013;40(3-4):365-378. https://doi.org/10.1007/s10295-012-1228-4
  25. Desmond OJ, Edgar CI, Manners JM, et al. Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum. Physiol Mol Plant Pathol. 2005;67(3-5):171-179. https://doi.org/10.1016/j.pmpp.2005.12.007
  26. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512-526.
  27. Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
  28. Perochon A, Doohan FM. Assessment of wheat resistance to Fusarium graminearum by automated image analysis of detached leaves assay. Bioprotocol. 2016;6:e2065-e2065.
  29. Jia LJ, Wang WQ, Tang WH. Wheat coleoptile inoculation by Fusarium graminearum for largescale phenotypic analysis. Bio Protoc. 2017;7(15):e2439.
  30. Shin S, Kim KH, Kang CS, et al. A simple method for the assessment of Fusarium head blight resistance in Korean wheat seedlings inoculated with Fusarium graminearum. Plant Pathol J. 2014;30(1):25-32. https://doi.org/10.5423/PPJ.OA.06.2013.0059
  31. Paudel B, Zhuang Y, Galla A, et al. WFhb1-1 plays an important role in resistance against Fusarium head blight in wheat. Sci Rep. 2020;10(1):7794.
  32. Hoffman MT, Gunatilaka MK, Wijeratne K, et al. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLOS One. 2013;8(9):e73132.
  33. Maor R, Haskin S, Levi-Kedmi H, et al. In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol. 2004;70(3):1852-1854. https://doi.org/10.1128/AEM.70.3.1852-1854.2004
  34. Larena I, De Cal A, Melgarejo P. Solid substrate production of Epicoccum nigrum conidia for biological control of brown rot on stone fruits. Int J Food Microbiol. 2004;94(2):161-167. https://doi.org/10.1016/j.ijfoodmicro.2004.01.007
  35. Schulz B, Boyle C. The endophytic continuum. Mycol Res. 2005;109(6):661-686. https://doi.org/10.1017/S095375620500273X
  36. De Cal A, Larena I, Linan M, et al. Population dynamics of Epicoccum nigrum, a biocontrol agent against brown rot in stone fruit. J Appl Microbiol. 2009;106(2):592-605. https://doi.org/10.1111/j.1365-2672.2008.04030.x
  37. Larena I, Torres R, De Cal A, et al. Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biol Control. 2005;32(2):305-310. https://doi.org/10.1016/j.biocontrol.2004.10.010
  38. Mari M, Torres R, Casalini L, et al. Control of post-harvest brown rot on nectarine by Epicoccum nigrum and physico-chemical treatments. J Sci Food Agric. 2007;87(7):1271-1277. https://doi.org/10.1002/jsfa.2839
  39. Pieckenstain FL, Bazzalo ME, Roberts AMI, et al. Epicoccum purpurascens for biocontrol of Sclerotinia head rot of sunflower. Mycol Res. 2001;105(1):77-84. https://doi.org/10.1017/S0953756200003129
  40. Perveen I, Raza MA, Iqbal T, et al. Isolation of anticancer and antimicrobial metabolites from Epicoccum nigrum; endophyte of Ferula sumbul. Microb Pathog. 2017;110:214-224. https://doi.org/10.1016/j.micpath.2017.06.033
  41. Roux F, Voisin D, Badet T, et al. Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol Plant Pathol. 2014;15(5):427-432.
  42. Jones JD, Dangl JL. The plant immune system. Nature. 2006;444(7117):323-329. https://doi.org/10.1038/nature05286
  43. Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature. 2001;411(6839):826-833. https://doi.org/10.1038/35081161
  44. Sonah H, Zhang X, Deshmukh RK, et al. Comparative transcriptomic analysis of virulence factors in Leptosphaeria maculans during compatible and incompatible interactions with canola. Front Plant Sci. 2016;7:1784.
  45. Breen S, Williams SJ, Outram M, et al. Emerging insights into the functions of pathogenesis-related protein 1. Trends Plant Sci. 2017;22(10):871-879. https://doi.org/10.1016/j.tplants.2017.06.013
  46. Ali S, Ganai BA, Kamili AN, et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res. 2018;212:29-37.