과제정보
This work was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education [2020R1A2C2013617, 2020R1A6A1A03047729] and the Green Fusion Technology Program funded by the Ministry of Environment, Republic of Korea.
참고문헌
- Favaro LCL, Melo FL, Aguilar-Vildoso CI, et al. Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. PLOS One. 2011;6(8):e14828.
- Taguiam JD, Evallo E, Balendres MA. Epicoccum species: ubiquitous plant pathogens and effective biological control agents. Eur J Plant Pathol. 2021;159(4):713-725. https://doi.org/10.1007/s10658-021-02207-w
- Zhou T, Reeleder RD. Application of Epicoccum purpurascens spores to control white mold of snap bean. Plant Dis. 1989;73(8):639-642. https://doi.org/10.1094/PD-73-0639
- Koutb M, Ali EH. Potential of Epicoccum purpurascens strain 5615 AUMC as a biocontrol agent of Pythium irregulare root rot in three leguminous plants. Mycobiology. 2010;38(4):286-294. https://doi.org/10.4489/MYCO.2010.38.4.286
- Braga RM, Padilla G, Araujo WL. The biotechnological potential of Epicoccum spp.: diversity of secondary metabolites. Crit Rev Microbiol. 2018;44(6):759-778. https://doi.org/10.1080/1040841X.2018.1514364
- Favaro LCL, Sebastianes FLS, Araujo WL. Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLOS One. 2012;7(6):e36826.
- Arnold AE. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev. 2007;21(2-3):51-66. https://doi.org/10.1016/j.fbr.2007.05.003
- Perello A, Simon MR, Arambarri AM. Interactions between foliar pathogens and the saprophytic microflora of the wheat (Triticum aestivum L.) phylloplane. J Phytopathol. 2002;150(4-5):232-243. https://doi.org/10.1046/j.1439-0434.2002.00747.x
- Larran S, Perello A, Simon MR, et al. The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol. 2007;23(4):565-572. https://doi.org/10.1007/s11274-006-9266-6
- Boedi S, Berger H, Sieber C, et al. Comparison of Fusarium graminearum transcriptomes on living or dead wheat differentiates substrate-responsive and defense-responsive genes. Front Microbiol. 2016;7:1113.
- Yang F, Jacobsen S, Jorgensen HJ, et al. Fusarium graminearum and its interactions with cereal heads: studies in the proteomics era. Front Plant Sci. 2013;4:37.
- Khanal R, Choo TM, Xue AG, et al. Response of barley genotypes to Fusarium head blight under natural infection and artificial inoculation conditions. Plant Pathol J. 2021;37(5):455-464. https://doi.org/10.5423/PPJ.OA.06.2021.0094
- Leslie JF, Summerell BA, Bullock S. The Fusarium laboratory manual. Ames (IA): Blackwell Publising; 2006.
- Yang J-W, Kim J-Y, Lee M-R, et al. Identification and chemotype profiling of Fusarium head blight disease in triticale. Res Plant Dis. 2021;27(4):172-179. https://doi.org/10.5423/RPD.2021.27.4.172
- Jensen BD, Knorr K, Nicolaisen M. In vitro competition between Fusarium graminearum and Epicoccum nigrum on media and wheat grains. Eur J Plant Pathol. 2016;146(3):657-670. https://doi.org/10.1007/s10658-016-0950-6
- Abdallah MF, De Boevre M, Landschoot S, et al. Fungal endophytes control Fusarium graminearum and reduce trichothecenes and zearalenone in maize. Toxins. 2018;10(12):493.
- Mohamed AH, Abd El-Megeed FH, Hassanein NM, et al. Native rhizospheric and endophytic fungi as sustainable sources of plant growth promoting traits to improve wheat growth under low nitrogen input. J Fungi. 2022;8(2):94.
- Sujatha HS, Murali M, Amruthesh KN. Fungal endophytes as growth promoters and inducers of resistance in tomato (Lycopersicon esculentum Mill.) against Alternaria solani. Int J Life Sci Pharma Res. 2021;11:227-235.
- Rajini SB, Nandhini M, Udayashankar AC, et al. Diversity, plant growth-promoting traits, and biocontrol potential of fungal endophytes of Sorghum bicolor. Plant Pathol. 2020;69(4):642-654. https://doi.org/10.1111/ppa.13151
- Larena I, Melgarejo P. Development of a new strategy for monitoring Epicoccum nigrum 282, a biological control agent used against brown rot caused by Monilinia spp. in peaches. Postharvest Biol Tec. 2009;54(2):63-71. https://doi.org/10.1016/j.postharvbio.2009.05.007
- Sulaiman IM, Jacobs E, Simpson S. Application of ribosomal internal transcribed spacer 1, internal transcribed spacer 2, and large-subunit D1-D2 regions as the genetic markers to identify fungi isolated from different environmental samples: a molecular surveillance study of public health importance. J AOAC Int. 2020;103(3):843-850. https://doi.org/10.1093/jaocint/qsz012
- Mwamula AO, Kim Y, Kim YH, et al. Molecular characterization of Filenchus cylindricus (Thorne & Malek, 1968) Niblack & Bernard, 1985 (Tylenchida: Tylenchidae) from Korea, with comments on its morphology. Plant Pathol J. 2022;38(4):323-333. https://doi.org/10.5423/PPJ.OA.02.2022.0020
- Raja HA, Miller AN, Pearce CJ, et al. Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod. 2017;80(3):756-770. https://doi.org/10.1021/acs.jnatprod.6b01085
- Zhang S, Zhang YJ, Liu XZ, et al. On the reliability of DNA sequences of Ophiocordyceps sinensis in public databases. J Ind Microbiol Biotechnol. 2013;40(3-4):365-378. https://doi.org/10.1007/s10295-012-1228-4
- Desmond OJ, Edgar CI, Manners JM, et al. Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum. Physiol Mol Plant Pathol. 2005;67(3-5):171-179. https://doi.org/10.1016/j.pmpp.2005.12.007
- Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512-526.
- Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
- Perochon A, Doohan FM. Assessment of wheat resistance to Fusarium graminearum by automated image analysis of detached leaves assay. Bioprotocol. 2016;6:e2065-e2065.
- Jia LJ, Wang WQ, Tang WH. Wheat coleoptile inoculation by Fusarium graminearum for largescale phenotypic analysis. Bio Protoc. 2017;7(15):e2439.
- Shin S, Kim KH, Kang CS, et al. A simple method for the assessment of Fusarium head blight resistance in Korean wheat seedlings inoculated with Fusarium graminearum. Plant Pathol J. 2014;30(1):25-32. https://doi.org/10.5423/PPJ.OA.06.2013.0059
- Paudel B, Zhuang Y, Galla A, et al. WFhb1-1 plays an important role in resistance against Fusarium head blight in wheat. Sci Rep. 2020;10(1):7794.
- Hoffman MT, Gunatilaka MK, Wijeratne K, et al. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLOS One. 2013;8(9):e73132.
- Maor R, Haskin S, Levi-Kedmi H, et al. In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol. 2004;70(3):1852-1854. https://doi.org/10.1128/AEM.70.3.1852-1854.2004
- Larena I, De Cal A, Melgarejo P. Solid substrate production of Epicoccum nigrum conidia for biological control of brown rot on stone fruits. Int J Food Microbiol. 2004;94(2):161-167. https://doi.org/10.1016/j.ijfoodmicro.2004.01.007
- Schulz B, Boyle C. The endophytic continuum. Mycol Res. 2005;109(6):661-686. https://doi.org/10.1017/S095375620500273X
- De Cal A, Larena I, Linan M, et al. Population dynamics of Epicoccum nigrum, a biocontrol agent against brown rot in stone fruit. J Appl Microbiol. 2009;106(2):592-605. https://doi.org/10.1111/j.1365-2672.2008.04030.x
- Larena I, Torres R, De Cal A, et al. Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biol Control. 2005;32(2):305-310. https://doi.org/10.1016/j.biocontrol.2004.10.010
- Mari M, Torres R, Casalini L, et al. Control of post-harvest brown rot on nectarine by Epicoccum nigrum and physico-chemical treatments. J Sci Food Agric. 2007;87(7):1271-1277. https://doi.org/10.1002/jsfa.2839
- Pieckenstain FL, Bazzalo ME, Roberts AMI, et al. Epicoccum purpurascens for biocontrol of Sclerotinia head rot of sunflower. Mycol Res. 2001;105(1):77-84. https://doi.org/10.1017/S0953756200003129
- Perveen I, Raza MA, Iqbal T, et al. Isolation of anticancer and antimicrobial metabolites from Epicoccum nigrum; endophyte of Ferula sumbul. Microb Pathog. 2017;110:214-224. https://doi.org/10.1016/j.micpath.2017.06.033
- Roux F, Voisin D, Badet T, et al. Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol Plant Pathol. 2014;15(5):427-432.
- Jones JD, Dangl JL. The plant immune system. Nature. 2006;444(7117):323-329. https://doi.org/10.1038/nature05286
- Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature. 2001;411(6839):826-833. https://doi.org/10.1038/35081161
- Sonah H, Zhang X, Deshmukh RK, et al. Comparative transcriptomic analysis of virulence factors in Leptosphaeria maculans during compatible and incompatible interactions with canola. Front Plant Sci. 2016;7:1784.
- Breen S, Williams SJ, Outram M, et al. Emerging insights into the functions of pathogenesis-related protein 1. Trends Plant Sci. 2017;22(10):871-879. https://doi.org/10.1016/j.tplants.2017.06.013
- Ali S, Ganai BA, Kamili AN, et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res. 2018;212:29-37.