Acknowledgement
We would like to thank Biomarker Technologies (Beijing, China) and Lijun Zhuo from the Institute of Microbiology, Guangdong Academy of Sciences for providing technological assistance.
References
- Ohm RA, de Jong JF, Lugones LG, et al. Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol. 2010;28(9):957-963. https://doi.org/10.1038/nbt.1643
- Peter JV, Natalia E, Han ABW, et al. High-throughput targeted gene deletion in the model mushroom Schizophyllum commune using pre-assembled Cas9 ribonucleoproteins. Sci Rep. 2019;9(1):7632.
- Jan F, Robin AO, Charissa D, et al. Inactivation of ku80 in the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiol Lett. 2010;310(1):91-95.
- Kues U, Liu Y. Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol. 2000;54(2):141-152. https://doi.org/10.1007/s002530000396
- Robin AO, Jan F, Charissa D, et al. Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation. Mol Microbiol. 2011;81(6):1433-1445.
- Nicole K, Elke-Martina J, Daniela F, et al. A central role for Ras1 in morphogenesis of the basidiomycete Schizophyllum commune. Eukaryot Cell. 2013;12(6):941-952. https://doi.org/10.1128/EC.00355-12
- Krisztina K, Eva A, Zsolt M, et al. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proc Natl Acad Sci USA. 2019;116(15):7409-7418. https://doi.org/10.1073/pnas.1817822116
- Gudrun B, Andrzej TW. Control of chromatin structure by long noncoding RNA. Trends Cell Biol. 2015;25(10):623-632. https://doi.org/10.1016/j.tcb.2015.07.002
- Li S, Yamada M, Han X, et al. High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. Dev Cell. 2016;39(4):508-522.
- Soni DK, Biswas R. Role of non-coding RNAs in post-transcriptional regulation of lung diseases. Front Genet. 2021;12:767348.
- Jianhua W, Xueting R, Nan W. A mutation-related long noncoding RNA signature of genome instability predicts immune infiltration and hepatocellular carcinoma prognosis. Front Genet. 2021;12:779554.
- Petra T, Robert LM, Astrid RMA. A current view on long noncoding RNAs in yeast and filamentous fungi. Appl Microbiol Biotechnol. 2018;102(17):7319-7331. https://doi.org/10.1007/s00253-018-9187-y
- Nadia C, Youbao Z, Ence Y. The lncRNA RZE1 controls cryptococcal morphological transition. PLoS Genet. 2015;11(11):e1005692.
- Fabien M, Ezgi Wood N, Gavin K. A regulatory circuit of two lncRNAs and a master regulator directs cell fate in yeast. Nat Commun. 2018;9(1):780.
- Wang Y, Shao Y, Zhu Y, et al. XRN1-associated long non-coding RNAs may contribute to fungal virulence and sexual development in entomopathogenic fungus Cordyceps militaris. Pest Manag Sci. 2019;75(12):3302-3311. https://doi.org/10.1002/ps.5453
- Petra T, Marion EP, Robert LM. A long noncoding RNA promotes cellulase expression in Trichoderma reesei. Biotechnol Biofuels. 2018;11:78.
- Wonyong K, Cristina MR, Jie W. Developmental dynamics of long noncoding RNA expression during sexual fruiting body formation in Fusarium graminearum. mBio. 2018;9(4):e01292.
- Jianqin L, Bin W, Jiang X. Genome-wide identification and characterization of long intergenic non-coding RNAs in Ganoderma lucidum. PLoS One. 2014;9(6):e99442.
- Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357-360. https://doi.org/10.1038/nmeth.3317
- Franceschini A, Szklarczyk D, Frankild S. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:808-815.
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
- Mi H, Muruganujan A, Ebert D, et al. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419-D426. https://doi.org/10.1093/nar/gky1038
- Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. https://doi.org/10.1093/nar/28.1.27
- Sreya G, Chon-Kit KC. Analysis of RNA-Seq data using TopHat and cufflinks. Methods Mol Biol. 2016;1374:339-361. https://doi.org/10.1007/978-1-4939-3167-5_18
- Cao P, Fan W, Li P, et al. Genome-wide profiling of long noncoding RNAs involved in wheat spike development. BMC Genomics. 2021;22(1):493.
- Thomas DS, Kenneth JL. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101-1108. https://doi.org/10.1038/nprot.2008.73
- Jeffrey JQ, Howard YC. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47-62. https://doi.org/10.1038/nrg.2015.10
- Ibrahim AC, Nati H, Geza S. The coding and noncoding transcriptome of Neurospora crassa. BMC Genomics. 2017;18(1):978.
- Nan L, Shuting Y, Chengcheng H. Coordinated regulation of protoperithecium development by MAP kinases MAK-1 and MAK-2 in Neurospora crassa. Front Microbiol. 2021;12:769615.
- Guanggan H, Linda H, Eddy S. The monothiol glutaredoxin Grx4 influences thermotolerance, cell wall integrity, and Mpk1 signaling in Cryptococcus neoformans. G3. 2021;11(11):jkab322.
- Zhou X, He J, Wang L, et al. Metabolic engineering of Saccharomyces cerevisiae to improve glucan biosynthesis. J Microbiol Biotechnol. 2019;29(5):758-764. https://doi.org/10.4014/jmb.1812.12049
- Tsuyoshi SN, Yasuyuki S, Kenji M. Suppression of Vps13 adaptor protein mutants reveals a central role for PI4P in regulating prospore membrane extension. PLoS Genet. 2021;17(8):e1009727.
- Chengjun C, Chaoyang X. More than just cleaning: ubiquitin-mediated proteolysis in fungal pathogenesis. Front Cell Infect Microbiol. 2021;11:774613.
- Meng S, Xiong M, Jagernath JS, et al. UvAtg8-mediated autophagy regulates fungal growth, stress responses, conidiation, and pathogenesis in Ustilaginoidea virens. Rice. 2020;13(1):56.
- Stephen D. Linking the cell cycle to cell fate decisions. Trends Cell Biol. 2015;25(10):592-600. https://doi.org/10.1016/j.tcb.2015.07.007
- Jose PM, Sonia CL, Cecilia S. Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi. Mol Genet Genomics. 2006;276(3):211-229. https://doi.org/10.1007/s00438-006-0152-6
- Jose PM, Paola B, Sonia C. Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Semin Cell Dev Biol. 2016;57:93-99. https://doi.org/10.1016/j.semcdb.2016.03.017