DOI QR코드

DOI QR Code

Identification of Long Non-Coding RNAs and Their Target Genes from Mycelium and Primordium in Model Mushroom Schizophyllum commune

  • Tuheng Wu (Guangdong Yuewei Edible Fungi Technology Co.) ;
  • Jian Chen (Guangdong Yuewei Edible Fungi Technology Co.) ;
  • Chunwei Jiao (Guangdong Yuewei Edible Fungi Technology Co.) ;
  • Huiping Hu (Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences) ;
  • Qingping Wu (School of Bioscience and Bioengineering, South China University of Technology) ;
  • Yizhen Xie (Guangdong Yuewei Edible Fungi Technology Co.)
  • Received : 2022.04.20
  • Accepted : 2022.08.21
  • Published : 2022.10.31

Abstract

Schizophyllum commune has emerged as the most promising model mushroom to study developmental stages (mycelium, primordium), which are two primary processes of fruit body development. Long non-coding RNA (lncRNA) has been proved to participate in fruit development and sex differentiation in fungi. However, potential lncRNAs have not been identified in S. commune from mycelium to primordium developmental stages. In this study, lncRNA-seq was performed in S. commune and 61.56 Gb clean data were generated from mycelium and primordium developmental stages. Furthermore, 191 lncRNAs had been obtained and a total of 49 lncRNAs were classified as differently expressed lncRNAs. Additionally, 26 up-regulated differently expressed lncRNAs and 23 down-regulated between mycelium and primordia libraries were detected. Further, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differentially expressed lncRNAs target genes from the MAPK pathway, phosphatidylinositol signal, ubiquitin-mediated proteolysis, autophagy, and cell cycle. This study provides a new resource for further research on the relationship between lncRNA and two developmental stages (mycelium, primordium) in S. commune.

Keywords

Acknowledgement

We would like to thank Biomarker Technologies (Beijing, China) and Lijun Zhuo from the Institute of Microbiology, Guangdong Academy of Sciences for providing technological assistance.

References

  1. Ohm RA, de Jong JF, Lugones LG, et al. Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol. 2010;28(9):957-963. https://doi.org/10.1038/nbt.1643
  2. Peter JV, Natalia E, Han ABW, et al. High-throughput targeted gene deletion in the model mushroom Schizophyllum commune using pre-assembled Cas9 ribonucleoproteins. Sci Rep. 2019;9(1):7632.
  3. Jan F, Robin AO, Charissa D, et al. Inactivation of ku80 in the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiol Lett. 2010;310(1):91-95.
  4. Kues U, Liu Y. Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol. 2000;54(2):141-152. https://doi.org/10.1007/s002530000396
  5. Robin AO, Jan F, Charissa D, et al. Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation. Mol Microbiol. 2011;81(6):1433-1445.
  6. Nicole K, Elke-Martina J, Daniela F, et al. A central role for Ras1 in morphogenesis of the basidiomycete Schizophyllum commune. Eukaryot Cell. 2013;12(6):941-952. https://doi.org/10.1128/EC.00355-12
  7. Krisztina K, Eva A, Zsolt M, et al. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proc Natl Acad Sci USA. 2019;116(15):7409-7418. https://doi.org/10.1073/pnas.1817822116
  8. Gudrun B, Andrzej TW. Control of chromatin structure by long noncoding RNA. Trends Cell Biol. 2015;25(10):623-632. https://doi.org/10.1016/j.tcb.2015.07.002
  9. Li S, Yamada M, Han X, et al. High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. Dev Cell. 2016;39(4):508-522.
  10. Soni DK, Biswas R. Role of non-coding RNAs in post-transcriptional regulation of lung diseases. Front Genet. 2021;12:767348.
  11. Jianhua W, Xueting R, Nan W. A mutation-related long noncoding RNA signature of genome instability predicts immune infiltration and hepatocellular carcinoma prognosis. Front Genet. 2021;12:779554.
  12. Petra T, Robert LM, Astrid RMA. A current view on long noncoding RNAs in yeast and filamentous fungi. Appl Microbiol Biotechnol. 2018;102(17):7319-7331. https://doi.org/10.1007/s00253-018-9187-y
  13. Nadia C, Youbao Z, Ence Y. The lncRNA RZE1 controls cryptococcal morphological transition. PLoS Genet. 2015;11(11):e1005692.
  14. Fabien M, Ezgi Wood N, Gavin K. A regulatory circuit of two lncRNAs and a master regulator directs cell fate in yeast. Nat Commun. 2018;9(1):780.
  15. Wang Y, Shao Y, Zhu Y, et al. XRN1-associated long non-coding RNAs may contribute to fungal virulence and sexual development in entomopathogenic fungus Cordyceps militaris. Pest Manag Sci. 2019;75(12):3302-3311. https://doi.org/10.1002/ps.5453
  16. Petra T, Marion EP, Robert LM. A long noncoding RNA promotes cellulase expression in Trichoderma reesei. Biotechnol Biofuels. 2018;11:78.
  17. Wonyong K, Cristina MR, Jie W. Developmental dynamics of long noncoding RNA expression during sexual fruiting body formation in Fusarium graminearum. mBio. 2018;9(4):e01292.
  18. Jianqin L, Bin W, Jiang X. Genome-wide identification and characterization of long intergenic non-coding RNAs in Ganoderma lucidum. PLoS One. 2014;9(6):e99442.
  19. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357-360. https://doi.org/10.1038/nmeth.3317
  20. Franceschini A, Szklarczyk D, Frankild S. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:808-815.
  21. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
  22. Mi H, Muruganujan A, Ebert D, et al. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419-D426. https://doi.org/10.1093/nar/gky1038
  23. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. https://doi.org/10.1093/nar/28.1.27
  24. Sreya G, Chon-Kit KC. Analysis of RNA-Seq data using TopHat and cufflinks. Methods Mol Biol. 2016;1374:339-361. https://doi.org/10.1007/978-1-4939-3167-5_18
  25. Cao P, Fan W, Li P, et al. Genome-wide profiling of long noncoding RNAs involved in wheat spike development. BMC Genomics. 2021;22(1):493.
  26. Thomas DS, Kenneth JL. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101-1108. https://doi.org/10.1038/nprot.2008.73
  27. Jeffrey JQ, Howard YC. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47-62. https://doi.org/10.1038/nrg.2015.10
  28. Ibrahim AC, Nati H, Geza S. The coding and noncoding transcriptome of Neurospora crassa. BMC Genomics. 2017;18(1):978.
  29. Nan L, Shuting Y, Chengcheng H. Coordinated regulation of protoperithecium development by MAP kinases MAK-1 and MAK-2 in Neurospora crassa. Front Microbiol. 2021;12:769615.
  30. Guanggan H, Linda H, Eddy S. The monothiol glutaredoxin Grx4 influences thermotolerance, cell wall integrity, and Mpk1 signaling in Cryptococcus neoformans. G3. 2021;11(11):jkab322.
  31. Zhou X, He J, Wang L, et al. Metabolic engineering of Saccharomyces cerevisiae to improve glucan biosynthesis. J Microbiol Biotechnol. 2019;29(5):758-764. https://doi.org/10.4014/jmb.1812.12049
  32. Tsuyoshi SN, Yasuyuki S, Kenji M. Suppression of Vps13 adaptor protein mutants reveals a central role for PI4P in regulating prospore membrane extension. PLoS Genet. 2021;17(8):e1009727.
  33. Chengjun C, Chaoyang X. More than just cleaning: ubiquitin-mediated proteolysis in fungal pathogenesis. Front Cell Infect Microbiol. 2021;11:774613.
  34. Meng S, Xiong M, Jagernath JS, et al. UvAtg8-mediated autophagy regulates fungal growth, stress responses, conidiation, and pathogenesis in Ustilaginoidea virens. Rice. 2020;13(1):56.
  35. Stephen D. Linking the cell cycle to cell fate decisions. Trends Cell Biol. 2015;25(10):592-600. https://doi.org/10.1016/j.tcb.2015.07.007
  36. Jose PM, Sonia CL, Cecilia S. Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi. Mol Genet Genomics. 2006;276(3):211-229. https://doi.org/10.1007/s00438-006-0152-6
  37. Jose PM, Paola B, Sonia C. Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Semin Cell Dev Biol. 2016;57:93-99. https://doi.org/10.1016/j.semcdb.2016.03.017