DOI QR코드

DOI QR Code

Fourteen Unrecorded Species of Agaricales Underw. (Agaricomycetes, Basidiomycota) from the Republic of Korea

  • Shinnam Yoo (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Yoonhee Cho (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Ji Seon Kim (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Minkyeong Kim (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Young Woon Lim (School of Biological Sciences and Institute of Microbiology, Seoul National University)
  • Received : 2022.04.05
  • Accepted : 2022.06.29
  • Published : 2022.08.31

Abstract

Agaricales species form pileate-stipitate fruiting bodies and play important roles in maintaining the terrestrial ecosystem as decomposers, symbionts, and pathogens. Approximately 23,000 Agaricales species have been known worldwide, and 937 species have been recorded in the Republic of Korea. However, most of them were identified solely based on morphological characteristics that often led to misidentifications. The specimens collected from 2018 to 2020 in the Republic of Korea were identified based on phylogenetic analysis of the internal transcribed spacer (ITS) sequences. Their identities were confirmed by microscopic characteristics. As a result, 14 Agaricales species were discovered for the first time in the Republic of Korea. They belonged to nine genera: Agaricus, Calocybe, Cortinarius, Hygrocybe, Inocybe, Lepista, Leucoagaricus, Marasmius, and Psathyrella. Detailed macroscopic and microscopic descriptions were provided to help distinguish these species. The morphological and molecular data provided in this study will serve as reliable references for the identification of Agaricales species.

Keywords

Acknowledgement

This study was supported by the National Institute of Biological Resources (grant number NIBR202002116) under the Ministry of Environment of the Republic of Korea.

References

  1. Sanchez-Garcia M, Ryberg M, Khan FK, et al. Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi. Proc Natl Acad Sci USA. 2020;117(51):32528-32534. https://doi.org/10.1073/pnas.1922539117
  2. Varga T, Krizsan K, Foldi C, et al. Megaphylogeny resolves global patterns of mushroom evolution. Nat Ecol Evol. 2019;3(4):668-678. https://doi.org/10.1038/s41559-019-0834-1
  3. Roskov Y, Ower G, Orrell T, et al. Species 2000. ITIS Catalogue of Life, 2019 Annual Checklist; 2019. [cited 2022 Mar 1]. Available from: http://www.catalogueoflife.org/annual-checklist/2019.
  4. Wani BA, Bodha R, Wani A. Nutritional and medicinal importance of mushrooms. J Med Plants Res. 2010;4(24):2598-2604. https://doi.org/10.5897/JMPR09.565
  5. Brandenburg WE, Ward KJ. Mushroom poisoning epidemiology in the United States. Mycologia. 2018;110(4):637-641. https://doi.org/10.1080/00275514.2018.1479561
  6. Park MS, Bahk GJ. Estimate of the prevalence and burden of food poisoning by natural toxic compounds in South Korea. Food Res Int. 2015;78:108-113. https://doi.org/10.1016/j.foodres.2015.10.031
  7. Raja HA, Miller AN, Pearce CJ, et al. Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod. 2017;80(3):756-770. https://doi.org/10.1021/acs.jnatprod.6b01085
  8. Froslev TG, Jeppesen TS, Laessoe T, et al. Molecular phylogenetics and delimitation of species in Cortinarius section Calochroi (Basidiomycota, Agaricales) in Europe. Mol Phylogenet Evol. 2007;44(1):217-227. https://doi.org/10.1016/j.ympev.2006.11.013
  9. Justo A, Minnis AM, Ghignone S, et al. Species recognition in Pluteus and Volvopluteus (Pluteaceae, Agaricales): morphology, geography and phylogeny. Mycol Prog. 2011;10(4):453-479. https://doi.org/10.1007/s11557-010-0716-z
  10. Ashraf A, Hyde KD, Zhao R, et al. Inter-and intra-specific diversity in Agaricus endoxanthus and allied species reveals a new taxon, A. punjabensis. Phytotaxa. 2016;252(1):1-16. https://doi.org/10.11646/phytotaxa.252.1.1
  11. Garnica S, Weiss M, Oertel B, et al. A framework for a phylogenetic classification in the genus Cortinarius (Basidiomycota, Agaricales) derived from morphological and molecular data. Can J Bot. 2005;83(11):1457-1477.
  12. Bruns TD, White TJ, Taylor JW. Fungal molecular systematics. Annu Rev Ecol Syst. 1991;22(1):525-564. https://doi.org/10.1146/annurev.es.22.110191.002521
  13. Moncalvo J-M, Lutzoni FM, Rehner SA, et al. Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol. 2000;49(2):278-305. https://doi.org/10.1093/sysbio/49.2.278
  14. Moncalvo J-M, Vilgalys R, Redhead SA, et al. One hundred and seventeen clades of euagarics. Mol Phylogenet Evol. 2002;23(3):357-400. https://doi.org/10.1016/S1055-7903(02)00027-1
  15. Matheny PB, Curtis JM, Hofstetter V, et al. Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia. 2006;98(6):982-995. https://doi.org/10.1080/15572536.2006.11832627
  16. Hibbett DS, Pine EM, Langer E, et al. Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proc Natl Acad Sci USA. 1997;94(22):12002-12006. https://doi.org/10.1073/pnas.94.22.12002
  17. Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA. 2012;109(16):6241-6246. https://doi.org/10.1073/pnas.1117018109
  18. Hibbett DS, Abarenkov K, K~oljalg U, et al. Sequence-based classification and identification of fungi. Mycologia. 2016;108(6):1049-1068.
  19. Osmundson TW, Robert VA, Schoch CL, et al. Filling gaps in biodiversity knowledge for macro-fungi: contributions and assessment of an herbarium collection DNA barcode sequencing project. PLOS One. 2013;8(4):e62419.
  20. National Institute of Biological Resources. National species list of Korea; 2021. [cited 2022 Mar 01]. Available from: http://kbr.go.kr.
  21. Kim NK, Kim M, Lee JS, et al. Six new recorded species of macrofungi on Gayasan National Park in Korea. Korean J Mycol. 2021;49(3):385-392.
  22. Cho S-E, Kwag Y-N, Han S-K, et al. Seven newly recorded macrofungi of Inocybaceae (Agaricales, Basidiomycota) in Korea. Korean J Mycol. 2021;49(2):139-153.
  23. Lee H, Park MS, Park J-H, et al. Seventeen unrecorded species from Gayasan National Park in Korea. Mycobiology. 2020;48(3):184-194. https://doi.org/10.1080/12298093.2020.1765719
  24. Cho HJ, Lee H, Park MS, et al. Two new species of Laccaria (Agaricales, Basidiomycota) from Korea. Mycobiology. 2020;48(4):288-295. https://doi.org/10.1080/12298093.2020.1786961
  25. Lee H, Park JY, Wisitrassameewong K, et al. First report of eight milkcap species belonging to Lactarius and Lactifluus in Korea. Mycobiology. 2018;46(1):1-12. https://doi.org/10.1080/12298093.2018.1454012
  26. Kornerup A, Wanscher JH. Methuen handbook of colour. 3rd ed. London, England: Eyre Methuen; 1967.
  27. Rueden CT, Schindelin J, Hiner MC, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinf. 2017;18(1):529.
  28. Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA, editors. (eds) Plant molecular biology manual. Dordrecht, Netherlands: Springer; 1994; p. 183-190.
  29. White TJ, Bruns TD, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand. DH, Sninsky JJ (eds). PCR protocols: a guide to methods and applications. London, England: Academic Press; 1990. p. 315-322.
  30. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2(2):113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  31. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780. https://doi.org/10.1093/molbev/mst010
  32. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512-526.
  33. Kerrigan RW, Callac P, Guinberteau J, et al. Agaricus section Xanthodermatei: a phylogenetic reconstruction with commentary on taxa. Mycologia. 2005;97(6):1292-1315. https://doi.org/10.1080/15572536.2006.11832737
  34. Smith AH. North American species of Psathyrella. New York City, United States: The New York Botanical Garden Press; 1972.
  35. Kits van Waveren E. The Berkeley & Broome species of Psathyrella in the Kew Herbarium. Kew Bull. 1995;50(2):307-325. https://doi.org/10.2307/4110634
  36. Padamsee M, Matheny PB, Dentinger BTM, et al. The mushroom family Psathyrellaceae: evidence for large-scale polyphyly of the genus Psathyrella. Mol Phylogenet Evol. 2008;46(2):415-429. https://doi.org/10.1016/j.ympev.2007.11.004
  37. Larsson E, Orstadius L. Fourteen coprophilous species of Psathyrella identified in the Nordic countries using morphology and nuclear rDNA sequence data. Mycol Res. 2008;112(10):1165-1185. https://doi.org/10.1016/j.mycres.2008.04.003
  38. Lee JS, Choi SY, Kim C, et al. Twelve undescribed species of macrofungi from Korea. Korean J Mycol. 2016;44(4):233-239.
  39. Kwon SL, Jang S, Kim C, et al. Note of five unrecorded mushrooms including three rare species on Mount Juwang in Korea. Mycobiology. 2020;48(3):157-168. https://doi.org/10.1080/12298093.2020.1759348
  40. Antonin V, Ryoo R, Shin H-D. Marasmioid and gymnopoid fungi of the Republic of Korea. 2. Marasmius sect. Globulares. Persoonia. 2010;24(1):49-59. https://doi.org/10.3767/003158510X496107
  41. Pradeep CK, Vrinda KB, Varghese SP, et al. New and noteworthy species of Inocybe (Agaricales) from tropical India. Mycol Prog. 2016;15(3):24.
  42. Bandini D, Oertel B, Ploch S, et al. Revision of some central European species of Inocybe (Fr.: Fr.) Fr. subgenus Inocybe, with the description of five new species. Mycol Prog. 2019;18(1-2):247-294. https://doi.org/10.1007/s11557-018-1439-9
  43. Ammirati J, Liimatainen K, Bojantchev D, et al. Cortinarius subgenus Leprocybe, unexpected diversity and significant differences in species compositions between Western and Eastern North America. Persoonia. 2021;46(1):216-239.
  44. Liimatainen K, Niskanen T, Dima B, et al. The largest type study of Agaricales species to date: bringing identification and nomenclature of Phlegmacium (Cortinarius) into the DNA era. Persoonia. 2014;33(1):98-140. https://doi.org/10.3767/003158514X684681
  45. Hoiland K, Holst-Jensen A. Cortinarius phylogeny and possible taxonomic implications of ITS rDNA sequences. Mycologia. 2000;92(4):694-710. https://doi.org/10.1080/00275514.2000.12061210
  46. Moser M. Neuere erkenntnisse uber pilzgifte und giftpilze. Z Pilzkunde. 1971;37:41-56.
  47. Keller-Dilitz H, Moser M, Ammirati JF. Orellanine and other fluorescent compounds in the genus Cortinarius, section Orellani. Mycologia. 1985;77(5):667-673. https://doi.org/10.1080/00275514.1985.12025156
  48. Gill M, Strauch RJ. Constituents of Agaricus xanthodermus Genevier: the first naturally endogenous azo compound and toxic phenolic metabolites. Z Naturforsch C Biosci. 1984;39(11-12):1027-1029. https://doi.org/10.1515/znc-1984-11-1203
  49. Wood WF, Watson RL, Largent DL. Phenol, the odour compound from Agaricus praeclaresquamosus. Biochem Syst Ecol. 1998;26(7):793-794. https://doi.org/10.1016/S0305-1978(98)00058-1
  50. de Haro L, Prost N, Perringue C, et al. Intoxications par champignons Experience du Centre anti-poisons de Marseille en 1994 et 1998. J de Pediatrie et de Puericulture. 2000;13(1):58-61.
  51. Catalfomo P, Eugster CH. Muscarine and muscarine isomers in selected Inocybe species. Helv Chim Acta. 1970;53(4):848-851. https://doi.org/10.1002/hlca.19700530424
  52. Malone MH, Brown JK, Stuntz DE, et al. Paper chromatographic determination of muscarine in Inocybe species. J Pharm Sci. 1962;51(9):853-856. https://doi.org/10.1002/jps.2600510908
  53. Boonmee S, Yang ZL, Cai Q, et al. Fungal diversity notes 111-252-taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2015;75(1):27-274. https://doi.org/10.1007/s13225-015-0346-5
  54. Mahdizadeh V, Safaie N, Goltapeh EM, et al. Agaricus section Xanthodermatei in Iran. Phytotaxa. 2016;247(3):181-196. https://doi.org/10.11646/phytotaxa.247.3.2
  55. He M-Q, Chen J, Zhou J-L, et al. Tropic origins, a dispersal model for saprotrophic mushrooms in Agaricus section Minores with descriptions of sixteen new species. Sci Rep. 2017;7(1):5122.
  56. Parra LA. Fungi europaei, volume 1A, Agaricus L. Allopsalliota, Nauta & Bas (parte II). Alassio, Savona, Italy: Edizioni Candusso; 2013.
  57. Zhou J-L, Su S-Y, Su H-Y, et al. A description of eleven new species of Agaricus sections Xanthodermatei and Hondenses collected from Tibet and the surrounding areas. Phytotaxa. 2016;257(2):99-121. https://doi.org/10.11646/phytotaxa.257.2.1
  58. Callac P, Guinberteau J. Morphological and molecular characterization of two novel species of Agaricus section Xanthodermatei. Mycologia. 2005;97(2):416-424. https://doi.org/10.1080/15572536.2006.11832817
  59. Parra LA, Arrillaga P. Agaricus laskibarii. A new species from French coastal sand-dunes of seignosse. Documents Mycologiques. 2002;31(124):33-38.
  60. Li J-J, Wu S-Y, Yu X-D, et al. Three new species of Calocybe (Agaricales, Basidiomycota) from northeastern China are supported by morphological and molecular data. Mycologia. 2017;109(1):55-63. https://doi.org/10.1080/00275514.2017.1286570
  61. Pearson A. New records and observations. III. Trans Br Mycol Soc. 1946;29(4):191-210. https://doi.org/10.1016/S0007-1536(46)80001-9
  62. Bon M, Wilkinson J, Ovenden D. The mushrooms and toadstools of Britain and North-Western Europe. London, England: Hodder & Stoughton; 1987.
  63. Ban S-E, Cho D-H. Notes on higher fungi of Mt. Backdu (I). Korean J Nat Conserv. 2012;10(3-4): 193-220. https://doi.org/10.30960/kjnc.2012.10.3_4.193
  64. Robertson CP, Wright L, Gamiet S, et al. Cortinarius rubellus Cooke from British Columbia, Canada and Western Washington, USA. PNW Fungi. 2006;1(1):1-7.
  65. Shibata H. Cortinarius rubellus, a poisonous species new to Japan. Mycoscience. 2004;45(6):395-397. https://doi.org/10.1007/S10267-004-0198-4
  66. Breitenbach J, Kranzlin F. Fungi of Switzerland, vol. 5, agarics 3rd part. Lucerna, Switzerland: Verlag Mykologia; 2000.
  67. Bessette AE, Bessette AR, Fischer DW. Mushrooms of northeastern North America. Syracuse, New York, United States: Syracuse University Press; 1997.
  68. Hesler LR, Smith AH. North American species of hygrophorus. Knoxville, Tennessee, United States: University of Tennessee Press; 1963.
  69. Grund DW, Stuntz DE. Nova Scotian Inocybes. I. Mycologia. 1968;60(2):406-425. https://doi.org/10.1080/00275514.1968.12018581
  70. Gulden G. Studies in Lepista (FT.) WG smith section Lepista (Basidiomycotina, Agaricales). Sydowia. 1983;36:59-74.
  71. Singer R, Clemenc,on H. Notes on some leucosporous and rhodosporous European agarics. Nova Hedwigia; 1972.
  72. Bigelow HE. North American species of Clitocybe. Part I. Stuttgart, Germany: Schweizerbart Science Publishers; 1982.
  73. Bigelow HE, Hesler LR. Clitocybe in Tennessee and North Carolina. J Elisha Mitchell Sci Soc. 1960;76(1):155-167.
  74. Bon M. Tricholomataceae de France et d'Europe occidentale (6 Eme Partie: Tribu Clitocybeae Fay.). cle monographique. Documents Mycologiques. 1983;13(51):1-53.
  75. Bon M, L Clitocybes. Omphales et ressemblants. Flore Mycologique D'Europe. Documents Mycologiques. 1997;4:1-173.
  76. Ge Z-W, Yang ZL, Qasim T, et al. Four new species in Leucoagaricus (Agaricaceae, Basidiomycota) from Asia. Mycologia. 2015;107(5):1033-1044. https://doi.org/10.3852/14-351
  77. Vellinga EC. Leucoagaricus. In: MENoordeloos ME, Kuyper TW, Vellinga EC, editors. Flora agaricina neerlandica, vol. 5. Rotterdam, Netherlands: A.A. Balkema Publishers; 2001. p. 85-108..
  78. Breitenbach J, Kranzlin F. Fungi of Switzerland, vol. 4, agarics 2nd part. Lucerna, Switzerland: Verlag Mykologia; 1995.
  79. Kiyashko AA, Malysheva EF, Antonin V, et al. Fungi of the Russian far east 2. New species and new records of Marasmius and Cryptomarasmius (Basidiomycota). Phytotaxa. 2014;186(1):1-028. https://doi.org/10.11646/phytotaxa.186.1.1
  80. Corner EJH. The agaric genera Marasmius, Chaetocalathus, Crinipellis, Heimiomyces, Resupinatus, Xerula and Xerulina in Malesia. Nova Hedwigia. 1996;111:1-175.
  81. Wannathes N, Desjardin DE, Hyde KD, et al. A monograph of Marasmius (Basidiomycota) from Northern Thailand based on morphological and molecular (ITS sequences) data. Fungal Divers. 2009;37:209-306.
  82. Yan JQ, Bau T. The Northeast Chinese species of Psathyrella (Agaricales, Psathyrellaceae). Mycokeys. 2018;33:85-102. https://doi.org/10.3897/mycokeys.33.24704
  83. Vasutova M. Taxonomic studies on Psathyrella sect. Spadiceae. Czech Mycol. 2008;60(2):137-171. https://doi.org/10.33585/cmy.60201
  84. Hausknecht A, Pidlich-Aigner H, Forstinger H. Ergebnisse des Mykologischen Arbeitstreffens in Langschlag (Waldviertel, Niederosterreich) im September/Oktober 2005. Osterreiches Zeitschrift Fur Pilzkunde. 2006;15:149-179.
  85. Orstadius L, Ryberg M, Larsson E. Molecular phylogenetics and taxonomy in Psathyrellaceae (Agaricales) with focus on psathyrelloid species: introduction of three new genera and 18 new species. Mycol Prog. 2015;14(5):25.