DOI QR코드

DOI QR Code

이산화염소수와 전해수를 이용한 식중독균의 살균효과

Bactericidal Effects of Food-borne Bacteria using Chlorine Dioxide and Electrolyzed Water

  • Lee, Hye-Rin (Department of Food and Nutrition, Yeungnam University) ;
  • Kim, Su-Jin (Department of Food and Nutrition, Yeungnam University) ;
  • Bang, Woo-Suk (Department of Food and Nutrition, Yeungnam University)
  • 투고 : 2022.07.27
  • 심사 : 2022.08.16
  • 발행 : 2022.08.30

초록

본 연구에서는 병원균인 Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium 그리고 Escherichia coli O157:H7을 이산화염소수와 전해수에 0분, 2분, 4분, 6분, 8분 및 10분간 반응시켜 이산화염소수와 전해수의 살균 효과를 확인하고, 그람 양성균(B. cereus, S. aureus)과 그람 음성균(S. Typhimurium, E. coli O157:H7)의 민감성 비교를 실시하였다. B. cereus, S. aureus, S. Typhimurium 그리고 E. coli O157:H7의 이산화염소수에서의 D값은 1.85±0.64, 2.06±0.85, 2.26±0.89 그리고 2.59±0.40분으로 나타났고 전해수의 경우 각각 2.13±0.32, 1.64±0.64, 1.71±0.32 그리고 1.86±0.36분으로 나타났다. 각 용액에 처리한 10분 간 모든 균주에서 꾸준한 감소 추세를 나타내었으며 각 용액에서 각 균주의 D값은 서로 유의적인 차이는 보이지 않았다 (P>0.05). 이산화염소수와 전해수의 살균력을 비교한 결과 D값은 유의적인 차이가 나타나지 않았으나, pH와 유효염소농도 모두 이산화염소가 전해수보다 낮은 값을 보였다. 살균·소독을 실시할 대상의 pH에 대한 민감성과 같은 특성을 고려하여 최적의 살균제를 선택하고, 최적의 농도를 결정하여 식품 산업에 적용하기 위한 자료로 활용될 것으로 기대된다.

The present study investigated the bactericidal effects of chlorine dioxide (CD) and electrolyzed water (EW) on pathogenic bacteria, such as Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium, and Escherichia coli O157:H7, by treatment them with CD and EW, respectively, for 0, 2, 4, 6, 8, and 10 min. Additionally, the sensitivities of Gram-positive (B. cereus and S. aureus) and Gram-negative (S. Typhimurium and E. coli O157:H7) to CD and EW were compared, respectively. In CD, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 1.85±0.64, 2.06±0.85, 2.26±0.89, and 2.59±0.40 min, respectively. In EW, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 2.13±0.32, 1.64±0.64, 1.71±0.32, and 1.86±0.36 min, respectively. All strains decreased consistently for 10 min in both CD and EW. However, the D-values of each bacterial species did not differ significantly between CD and EW (P>0.05). When comparing the bactericidal effect of CD and EW, no difference in D-value was observed, even though the pH and available chlorine concentration of CD were significantly lower than those of EW. These data could be used for the application of CD and EW in the food industry, considering characteristics such as the selection of optimal disinfectants, determination of optimal concentrations, and sensitivity to disinfection targets.

키워드

참고문헌

  1. Ministry of Food and Drug Safety (MFDS), Food & drug statistical yearbook. Ministry of Food and Drug Safety, Cheong-Ju, Korea, 286-287 (2018).
  2. Choi, J.H., Commercialization strategies for export markets of fresh-cut baby leaf vegetables. Food Sci. Ind., 46, 23-29 (2013).
  3. Kim, J.G., Packaging technology of fresh-cut produce. Food Sci. Ind., 50, 12-26 (2017).
  4. Kim, I.J., Ha, J.H., Kim, Y.S., Kim, H.I., Choi, H.C., Jeon, D.H., Lee, Y.J., Kim, A.J., Bae, D.H., Kim, K.S., Lee, C., Ha, S.D., Evaluation for efficacies of commercial sanitizers and disinfectants against Bacillus cereus strains. Food Sci. Biotechnol., 18, 537-540 (2019).
  5. Park, S.Y., Choi, S.Y., Jeong, S.H., Lee, N.Y., Oh, S.R., Park, K.S., Ha, S.D., Reduction technology against hazardous microorganisms in seafood. Safe Food, 7, 37-46 (2012).
  6. White, G.C., White's handbook of chlorination and alternative disinfectants. John Wiley & Sons, Inc., Hoboken, NJ, USA, Chapter 14.
  7. Symons, J.M., Stevens, A.A., Clark, R.M., Geldreich, E.E., Thomas love, O, jr., Demarco, J., Treatment techniques for controlling trihalomethanes in drinking water. Drinking Water Research Division, Municipal Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency (1981).
  8. Ministry of Food and Drug Safety (MFDS) (2019) Food code. Available from: https://www.foodsafetykorea.go.kr/foodcode/01_01.jsp Accessed on 16 Dec. 2019.
  9. Han, J.E., Chlorine dioxide for minimally processed produce preservation. Bull. of Food Technol., 22, 445-461 (2009).
  10. Kang, K.S., Kim, T.I., Lee, H.I., Han, H.J., Park, S.G., Kim, H.J., Han, S.D., Park, K.Y., Rhee, Y.W., Investigation on the technology trend in electrolyzed sterilizing water by the patent analysis. Appl. Chem. Eng., 21, 188-194 (2010).
  11. Kim, Y.J., Choi, K.D., Shin, I.S., Bactericidal activity of strongly acidic electrolyzed water on various vegetables and kitchen apparatus. J. Korean Soc. Food Sci. Nutr., 39, 776-781 (2010). https://doi.org/10.3746/jkfn.2010.39.5.776
  12. Choi, K.H., Seo, J.H., Lee, M.K., Studies on production of antibacterial wet-tissue saturated with hypochlorous acid water. J. Korea TAPPI, 49, 5-11 (2017). https://doi.org/10.7584/JKTAPPI.2017.06.49.3.5
  13. Vorobjeva, N.V., Vorobjeva, L.I., Khodjaev, E.Y., The bactericidal effects of electrolyzed oxidizing water on bacterial strains involved in hospital infections. Artif. Organs, 28, 590-592 (2004). https://doi.org/10.1111/j.1525-1594.2004.07293.x
  14. Gunaydin, M., Esen, S., Karadag, A., Unal, N., Yanik, K., Odabasi, H., Birinci, A., In vitro antimicrobial activity of Medilox® super-oxidized water. Ann. Clin. Microbiol. Anitimicrob., 13, 1-6 (2014). https://doi.org/10.1186/1476-0711-13-1
  15. Jay, J.M., Loessner, M.J., Golden, D.A., Modern food micro-biology (7th ed.), Springer, New York, NY, USA. pp. 312-313 (2005).
  16. Junli, H., Li, W., Nanqi, R., Fang, M., Disinfection effect of chlorine dioxide on bacteria in water. Water Res., 31, 607-613 (1997). https://doi.org/10.1016/S0043-1354(96)00275-8
  17. Forghani, F., Park, J.H., Oh, D.H., Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water. Food Microbiol., 48, 28-34 (2015). https://doi.org/10.1016/j.fm.2014.11.020
  18. Marriott, N.G., Schilling, M.W., Gravani, R.B., Principles of food sanitation fifth edition. Springer, New York, USA, pp. 170-174 (2006).
  19. Vandekinderen, I., Devlieghere, F., Van Camp, J., Kerkaert, B., Cucu, T., Ragaert, P., De Bruyne, J., De Meulenaer, B., Effects of food composition on the inactivation of foodborne microorganisms by chlorine dioxide. Int. J. Food Microbiol., 131, 138-144 (2009). https://doi.org/10.1016/j.ijfoodmicro.2009.02.004
  20. Tango, C.N., Mansur, A.R., Oh, D.H., Fumaric acid and slightly acidic electrolyzed water inactivate gram positive and gram negative foodborne pathogens. Microorganisms, 3, 34-46 (2015). https://doi.org/10.3390/microorganisms3010034
  21. Kurahashi, M., Ito, T., Naka, A., Spatial disinfection potential of slightly acidic electrolyzed water. PLos One, 16, e0253595 (2021).
  22. Kang, K.S., Kim, T.I., Lee, H.I., Investigation on the technology trend in electrolyzed sterilizing water. Functional Waters, 1, 1-7 (2010).
  23. Kim, H.Y., Choi, J.K., Shin, I.S., Bactericidal effects of hypochlorous acid water against Vibrio parahaemolyticus contaminated on raw fish and shellfish. Korean J. Food Sci. Technol., 47, 719-724 (2015). https://doi.org/10.9721/KJFST.2015.47.6.719
  24. Kim, H.J., Tango, C.N., Chelliah, R., Oh, D.H., Sanitization efficacy of slightly acidic electrolyzed water against pure cultures of Escherichia coli, Salmonella enterica, Typhimurium, Staphylococcus aureus and Bacillus cereus spores, in comparison with different water hardness. Sci Rep., 9, 4348 (2019).
  25. Kim, J.G., Food hygiene. Shinkwang publisher, Seoul, Korea. pp. 58-169, (2006).
  26. Choi, S.H., Understanding of endoscopic disinfectants. Korean J. Gastrointest. Endos., 29, 89-98 (2004).
  27. Huang, Y.R., Hung, Y.C., Hsu, S.Y., Huang, Y.W., Hwang, D.F., Application of electrolyzed water in the food industry. Food Control, 19, 329-345 (2008) https://doi.org/10.1016/j.foodcont.2007.08.012