DOI QR코드

DOI QR Code

Reinforcement Learning based Multi-Channel MAC Protocol for Cognitive Radio Ad-hoc Networks

인지무선 에드혹 네트워크를 위한 강화학습기반의 멀티채널 MAC 프로토콜

  • Park, Hyung-Kun (School of Electrical Electronic and Communication Engineering, KOREATECH)
  • Received : 2022.05.11
  • Accepted : 2022.06.07
  • Published : 2022.07.31

Abstract

Cognitive Radio Ad-Hoc Networks (CRAHNs) enable to overcome the shortage of frequency resources due to the increase of radio services. In order to avoid interference with the primary user in CRANH, channel sensing to check the idle channel is required, and when the primary user appears, the time delay due to handover should be minimized through fast idle channel selection. In this paper, throughput was improved by reducing the number of channel sensing and preferentially sensing a channel with a high probability of being idle, using reinforcement learning. In addition, we proposed a multi-channel MAC (Medium Access Control) protocol that can minimize the possibility of collision with the primary user by sensing the channel at the time of data transmission without performing periodic sensing. The performance was compared and analyzed through computer simulation.

인지무선 에드혹 네트워크 (CRAHN : Cognitive Radio Ad-Hoc Networks)는 무선 서비스의 증가에 따른 주파수 자원부족을 극복할 수 있는 네트워크 기술이다. CRANH에서 주 사용자에 대한 간섭을 회피하기 위해 유휴채널을 확인하는 채널센싱이 필요하며, 주 사용자 출현시 빠른 유휴 채널선택을 통해 핸드오버로 인한 시간지연을 최소화 해야한다. 본 연구에서는 강화학습을 이용하여 CRANH에서 부 사용자의 채널 센싱의 대상을 축소하고 유휴채널의 가능성이 높은 채널을 우선적으로 센싱하도록함으로써 전송효율을 개선하였다. 또한 주기적인 센싱을 수행하지 않고 데이터의 전송시점에 채널을 센싱함으로써 센싱시점과 데이터 전송시점간의 차이로 인한 주 사용자와의 충돌가능성을 최소화할 수 있는 멀티채널 매체접근제어(MAC: Medium Access Control) 프로토콜을 제안하고 시뮬레이션을 통해 그 성능을 분석하였다.

Keywords

Acknowledgement

This paper was supported by Education and Research promotion program of KOREATECH in 2022

References

  1. S. Sharmila and T. Shanthi, "A survey on wireless ad hoc network: Issues and implementation," in 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), Pudukkottai, India, pp. 1-6, 2016.
  2. Y. Zhang, Y. Wang, J. Chen, B. Zhao, C. Gao, and J. Dong, "Spectrum Reallocation Algorithm Based on the Mobile Model for Cognitive Radio Networks," in 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, pp. 11-14, 2020.
  3. S. Abdzaher, M. Abdrabou, A. Al-shami, and I. Saroit, "Performance Evaluation of Medium Access Control Protocols for Cognitive Radio Ad Hoc Networks," in 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, pp. 76-79, 2019.
  4. F. F. Qureshi and A. G. Baksh, "Reliable Cognitive Radio multi-channel MAC protocol for Adhoc networks," in 2015 International Conference on Communications, Signal Processing, and their Applications (ICCSPA'15), Sharjah, United Arab Emirates, pp. 1-6, 2015.
  5. M. -X. Wu, Y. -J. Yang, C. -Y. Xie, and C. -M. Wu, "Distributed Multichannel MAC Protocol in Cognitive Radio Ad Hoc Networks," in 2018 1st International Cognitive Cities Conference (IC3), Okinawa, Japan, pp. 260-261, 2018.
  6. P. Rungsawang and A. Khawne, "The implementation of spectrum sensing and spectrum allocation on cognitive radio," in 2017 19th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, pp. 817-821 2017.
  7. T. N. Tran, T. -V. Nguyen, K. Shim, and B. An, "DQR: A Deep Reinforcement Learning-based QoS Routing Protocol in Cognitive Radio Mobile Ad Hoc Networks," in 2021 International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Korea, pp. 1-4, 2021.
  8. J. M. Kumbhar and V. P. Kulkarni, "Channel Selection in Multi-channel Multi-user RF Energy Harvesting Cognitive Radio Networks," in 2018 4th International Conference for Convergence in Technology (I2CT), Mangalore, India, pp. 1-5 , 2018.
  9. F. F. Qureshi, "Energy efficient cognitive radio MAC protocol for adhoc networks," in Wireless Telecommunications Symposium, London, UK, pp. 1-5, 2012.