DOI QR코드

DOI QR Code

Resource Allocation Scheme Using Small Feedback Overhead in Downlink Non-Orthogonal Multiple Access Systems

하향링크 비직교 다중 접속 시스템에서 적은 피드백 오버헤드를 이용하는 자원 할당 기법

  • Lee, In-Ho (School of Electronic and Electrical Engineering, Hankyong National University)
  • Received : 2022.05.28
  • Accepted : 2022.06.06
  • Published : 2022.07.31

Abstract

In this paper, we consider a system with massive user equipments (UEs) in a cell and assume path loss and Rayleigh fading channels between the base station (BS) and UEs. In addition, it is assumed that the system bandwidth consists of multiple identical frequency subchannels. Under such assumptions, we propose a channel state information (CSI) feedback scheme and a resource allocation scheme for non-orthogonal multiple access (NOMA) transmission in order to reduce the feedback overhead of CSI generated by massive UEs and to reduce the complexity of resource allocation. In particular, for the proposed schemes, we analyze the sum data rate achievable by massive UEs in a cell and the outage probability with which the UEs in a cell do not meet the target data rate. Through the simulation results, we show that the proposed schemes can provide the superior outage probability, although it degrades the average sum data rate.

본 논문에서는 셀내 대규모 단말이 존재하는 시스템을 고려하고, 기지국과 단말간 무선 채널은 경로 손실과 레일레이 페이딩 채널을 가정한다. 또한, 전체 시스템 대역폭은 다수의 균일한 주파수 부채널들로 구성된다고 가정한다. 이와 같은 가정하에 대규모 단말들로부터 발생하는 채널 상태 정보의 피드백 오버헤드를 줄이고 자원 할당의 복잡도를 감소시키기 위한 채널 상태 정보의 피드백 기법과 비직교 다중 접속 전송을 위한 자원 할당 기법을 제안한다. 특히, 제안하는 기법에 대하여 셀내 대규모 단말들이 달성할 수 있는 총 데이터 전송률 성능과 셀내 단말들이 목표 데이터 전송률을 충족하지 못하는 아웃티지 확률 성능을 분석한다. 시뮬레이션 결과를 통해 제안 기법은 평균 총 데이터 전송률 성능을 저하시키지만, 우수한 아웃티지 성능을 제공할 수 있음을 보여준다.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (Grant number: NRF-2022R1A2C1003388).

References

  1. I. Budhiraja, N. Kumar, S. Tyagi, S. Tanwar, Z. Han, M. J. Piran, and D. Y. Suh, "A systematic review on NOMA variants for 5G and beyond," IEEE Access, vol. 9, pp. 85573-85644, May. 2021. https://doi.org/10.1109/ACCESS.2021.3081601
  2. Y. Yuan, S. Wang, Y. Wu, H. V. Poor, Z. Ding, X. You, and L. Hanzo, "NOMA for next-generation massive IoT: performance potential and technology directions," IEEE Communication Magazine, vol. 59, no. 7, pp. 115-121, Jul. 2021. https://doi.org/10.1109/MCOM.001.2000997
  3. D. Kim and I. -H. Lee, "User Association and Power Allocation Scheme Using Deep Learning Algorithm in Non-Orthogonal Multiple Access Based Heterogeneous Networks," Journal of the Korea Institute of Information and Communication Engineering, vol. 26, no. 3, pp. 430-435, Mar. 2022. https://doi.org/10.6109/JKIICE.2022.26.3.430
  4. N. Yang, H. Zhang, K. Long, H. -Y. Hsieh, and J. Liu, "Deep Neural Network for Resource Management in NOMA Networks," IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 876-886, Jan. 2020. https://doi.org/10.1109/tvt.2019.2951822
  5. H. Zhang, H. Zhang, K. Long, and G. K. Karagiannidis, "Deep Learning Based Radio Resource Management in NOMA Networks: User Association, Subchannel and Power Allocation," IEEE Transactions on Network Science and Engineering, vol. 7, no. 4, pp. 2406-2415, Jun. 2020. https://doi.org/10.1109/TNSE.2020.3004333
  6. I. -H. Lee and H. Jung, "User Selection and Power Allocation for Downlink NOMA Systems with Quality-Based Feedback in Rayleigh Fading Channels," IEEE Wireless Communications Letters, vol. 9, no. 11, pp. 1924-1927, Nov. 2020. https://doi.org/10.1109/lwc.2020.3008174
  7. C. Chen, W. Cai, X. Cheng, L. Yang, and Y. Jin, "Low Complexity Beamforming and User Selection Schemes for 5G MIMO-NOMA Systems," IEEE Journal on Selected Areas in Communications, vol. 35, no. 12, pp. 2708-2722, Dec. 2017. https://doi.org/10.1109/jsac.2017.2727229
  8. 3GPP, "Study on channel model for frequencies from 0.5 to 100 GHz (Release 17)," 3GPP, Valbonne, France, Technical Report TR 38.901, 2022.
  9. L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, "A Survey of Non-Orthogonal Multiple Access for 5G," IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2294-2323, May. 2018. https://doi.org/10.1109/COMST.2018.2835558