Acknowledgement
This work is partially funded by the National Research Foundation of Korea (NRF) grants 2018R1D1A1B07043034 and 2019R1A4A1028134.
References
- Andrade, D., Fukumizu, K., and Okajima, Y. (2021) Convex covariate clustering for classification, Pattern Recognition Letters 151, 193-199. https://doi.org/10.1016/j.patrec.2021.08.012
- Bondell, H.D. and Reich, B.J. (2008) Simultaneous regression shrinkage, variable selection, and su- pervised clustering of predictors with oscar, Biometrics 64(1), 115-123. https://doi.org/10.1111/j.1541-0420.2007.00843.x
- Boyd, S., Boyd, S.P. and Vandenberghe, L. (2004) Convex optimization, Cambridge university press.
- Boyd, S., Parikh, N. and Chu, E. (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers, Now Publishers Inc.
- Chi, E.C. and Lange, K. (2015) Splitting methods for convex clustering, Journal of Computational and Graphical Statistics 24(4), 994-1013. https://doi.org/10.1080/10618600.2014.948181
- Fan, J. and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle prop- erties, Journal of the American statistical Association 96(456), 1348-1360. https://doi.org/10.1198/016214501753382273
- Harchaoui, Z. and Levy-Leduc, C. (2010) Multiple change-point estimation with a total variation penalty, Journal of the American Statistical Association 105 (492), 1480-1493. https://doi.org/10.1198/jasa.2010.tm09181
- Jeon, J.-J., Kwon, S., and Choi, H. (2017) Homogeneity detection for the high-dimensional general- ized linear model, Computational Statistics & Data Analysis 114, 61-74. https://doi.org/10.1016/j.csda.2017.04.001
- Ke, Z.T., Fan, J. and Wu, Y. (2015) Homogeneity pursuit, Journal of the American Statistical Associ- ation 110(509), 175-194. https://doi.org/10.1080/01621459.2014.892882
- Parikh, N. and Boyd, S. (2014) Proximal algorithms, Foundations and Trends in optimization 1(3), 127-239. https://doi.org/10.1561/2400000003
- Shen, X. and Huang, H.-C. (2010) Grouping pursuit through a regularization solution surface, Journal of the American Statistical Association 105(490), 727-739. https://doi.org/10.1198/jasa.2010.tm09380
- Tibshirani, R. (1996) Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B 58(1), 267-288.
- Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. and Knight, K. (2005) Sparsity and smoothness via the fused lasso, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67(1), 91-108. https://doi.org/10.1111/j.1467-9868.2005.00490.x
- Wahlberg, B., Boyd, S., Annergren, M., and Wang, Y. (2012) An ADMM algorithm for a class of total variation regularized estimation problems, IFAC Proceedings Volumes 45(16), 83-88.
- Zhang, C.-H. (2010) Nearly unbiased variable selection under minimax concave penalty, The Annals of statistics, 38(2), 894-942.
- Zhu, Y. (2017) An augmented ADMM algorithm with application to the generalized lasso problem, Journal of Computational and Graphical Statistics 26(1), 195-204. https://doi.org/10.1080/10618600.2015.1114491
- Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net, Journal of the royal statistical society: series B 67(2), 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x
- Zou, H. and Li, R.(2008) One-step sparse estimates in nonconcave penalized likelihood models, An- nals of statistics 36(4), 1509-1533.