A Discussion on Image Analysis in 18F-Florbetaben PET/CT

18F-Florbetaben PET/CT 검사에서 영상분석에 대한 고찰

  • Choi, Yong-Hoon (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Bahn, Young-Kag (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Lim, Han-Sang (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Kim, Jae-Sam (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System)
  • 최용훈 (연세의료원 세브란스병원 핵의학과) ;
  • 반영각 (연세의료원 세브란스병원 핵의학과) ;
  • 임한상 (연세의료원 세브란스병원 핵의학과) ;
  • 김재삼 (연세의료원 세브란스병원 핵의학과)
  • Received : 2022.04.12
  • Accepted : 2022.05.03
  • Published : 2022.05.20

Abstract

Purpose 18F-Florbetaben (FBB) Readings are made by visually comparing the signal strengths of gray matter and white matter. We intend to evaluate the usefulness of image analysis by comparing quantified image analysis with readout. Materials and Methods Based on the reading results, 100 patients were divided into a negative scan and a positive scan, and 300 MBq of FBB was injected, and images were taken 90 minutes later for 20 minutes. The equipment was a Discovery 600 (GE Healthcare, MI, USA). Four regions of interest (lateral temporal lobes, frontal lobes, posterior cingulate & precuneus, and parietal lobes) were established based on the amyloid reading standard provided by the manufacturer. For image analysis, SUVratio (SUVr) was calculated by dividing each SUVmean by the cerebellum, and the average SUVr in the entire area was performed. Statistical analysis analyzed the cutoff derivation through ROC Curve, the difference between groups in Independent sample t-test, and the degree of agreement with the reading result through Kappa test. Results The average SUVr cutoff in the entire area was 1.23. Concordance with the read results using cutoff was 95/100 (95%) for negative and 92/100 (92%) for positive. As a result of the t-test, there was a statistically significant difference between the groups (P < 0.05), and the Kappa statistical result showed a high degree of agreement with 0.867 (P < 0.05). Conclusion The results of image analysis were statistically significant and showed a high degree of agreement with the reading results. In addition, FBB image analysis can be viewed by 3D mapping the area where amyloid is accumulated, location estimation is possible, and quantitative analysis results can be viewed in detail. If quantified FBB image analysis is used as an auxiliary indicator, it is thought to be helpful in reading.

18F-FBB 판독은 회백질과 백질의 신호강도를 육안으로 비교하여 이루어진다. 정량화된 영상분석을 판독과 비교하여 영상분석의 유용성을 평가하고자 한다. 환자는 판독결과를 기준으로 음성과 양성을 100명씩 나누었고 FBB 300 MBq 주입하고 90분 뒤 20분간 촬영했다. 장비는 Discovery 600 (GE Healthcare, MI, USA)을 사용하였다. 제조사에서 제공하는 아밀로이드 판독 기준을 근거하여 4개의 관심영역을 설정하였다. 영상분석은 각 SUVmean을 소뇌로 나누어 SUVr를 산출하고 전체 영역에서의 평균 SUVr로 진행하였다. 통계분석은 ROC Curve를 통한 Cutoff 도출과 독립표본 t-test의 그룹간 차이, 그리고 Kappa test를 통한 판독결과와 일치도를 분석하였다. 전체 영역에서의 평균 SUVr의 Cutoff는 1.23으로 나왔다. Cutoff를 사용한 판독결과와 일치도는 음성에서 95/100 (95 %), 양성에서 92/100 (92 %)로 나왔다. t-test 결과 그룹 간에 통계적으로 유의한 차이가 있었고(P < 0.05) Kappa 통계 결과 0.867로 높은 일치도를 나타냈다(P < 0.05). 영상분석의 결과가 통계적으로 유의하며 판독결과에도 높은 일치도를 보여 주었다. 추가적으로 FBB 영상분석은 아밀로이드가 축적된 부위를 3D 매핑하여 볼 수 있고 위치추정이 가능하며 정량분석 결과를 세분화하여 볼 수 있다. 정량화된 FBB 영상분석을 보조지표로 활용한다면 판독에 도움이 될 것으로 사료된다.

Keywords

References

  1. 통계청. 2020 가구주 치매 진단 여부, 고령자(65세이상) 가구(일반가구). 국가통계포털(KOSIS) 통계표.
  2. Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Alzheimer Dis Assoc Disord. 1988;2:134.
  3. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA. 1985;82:4245-4249. https://doi.org/10.1073/pnas.82.12.4245
  4. Westman E, Simmons A, Muehlboeck JS, Mecocci P, Vellas B, Tsolaki M, et al. AddNeuroMed consortium; Alzheimer's Disease Neuroimaging Initiative. AddNeuroMed and ADNI: similar patterns of Alzheimer's atrophy and automated MRI classification accuracy in Europe and North America. Neuroimage. 2011;58:818-828. https://doi.org/10.1016/j.neuroimage.2011.06.065
  5. Santiago Bullich, Victor L. Villemagne, Ana M. Catafau, Aleksandar Jovalekic, Norman Koglin, Christopher C. Rowe and Susan De Santi. Optimal Reference Region to Measure Longitudinal Amyloid-β Change with 18F-Florbetaben PET. J Nucl Med. 2017;58:1300-1306. https://doi.org/10.2967/jnumed.116.187351
  6. De Santi S, Catafau AM, Seibyl J, Bullich S. Robustness of 18F-florbetaben SUVR cutoff quantification across reference regions and standards of truth [abstract]. J Nucl Med. 2016;57:458.
  7. Bullich S, Catafau AM, Seibyl J, De Santi S. Classification of positive and negative 18F-Florbetaben scans: comparison of SUVR cutoff quantification and visual assessment performance [abstract]. J Nucl Med. 2016;57:516.
  8. 박해정. 뇌기능 양전자방출단층촬영영상 분석 기법의 방법론적 고찰. 핵의학 분자영상. 2007;41:71-77
  9. Kevin Koser. Affine Registration. Springer US. 2014:22-25
  10. Evans, Alan C., et al. An MRI-based probabilistic atlas of neuroanatomy: Magnetic resonance scanning and epilepsy. Springer, Boston, MA. 1994:263-274.
  11. Barthel H, Bullich S, Sabri O, Seibyl J, Villemagne V, Rowe C, et al. 18F-Florbetaben (FBB) PET SUVR quantification: which reference region [abstract]? J Nucl Med. 2015;56(suppl 3):1563.