References
- Bao, Y., Li, J., Nagayama, T., Xu, Y., Spencer Jr, B. F., & Li, H. (2021). The 1st international project competition for structural health monitoring (IPC-SHM, 2020): A summary and benchmark problem. Structural Health Monitoring, 20(4), 2229-2239. https://doi.org/10.1177/14759217211006485
- Hoskere, V., Narazaki, Y., & Spencer, B. F. (2022). PhysicsBased Graphics Models in 3D Synthetic Environments as Autonomous Vision-Based Inspection Testbeds. Sensors, 22(2), 532.
- Zhang, K., Zhang, Y., & Cheng, H. D. (2020). Crackgan: Pavement crack detection using partially accurate ground truths based on generative adversarial learning. IEEE Transactions on Intelligent Transportation Systems, 22(2), 1306-1319. https://doi.org/10.1109/TITS.2020.2990703
- Gwon, G. H., Kim, H., Kim, Y., Baek, S. M., Choi, Y., & Jung, H. J.(2022). GAN-based damage assessment using image-toimage translation. IC-SHM 2021 submitted.
- Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1125-1134).
- Wang, T. C., Liu, M. Y., Zhu, J. Y., Tao, A., Kautz, J., & Catanzaro, B. (2018). High-resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8798-8807).
- Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
- Lee, J. H., Han, M. K., Ko, D. W., & Suh, I. H. (2019). From big to small: Multi-scale local planar guidance for monocular depth estimation. arXiv preprint arXiv:1907.10326.
- Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV) (pp. 801-818).