DOI QR코드

DOI QR Code

Enhanced Production of C30 Carotenoid 4,4'-Diaponeurosporene by Optimizing Culture Conditions of Lactiplantibacillus plantarum subsp. plantarum KCCP11226T

  • Siziya, Inonge Noni (Division of Bioengineering, Incheon National University) ;
  • Yoon, Deok Jun (Department of Bioengineering and Nano-Bioengineering, Incheon National University) ;
  • Kim, Mibang (Department of Bioengineering and Nano-Bioengineering, Incheon National University) ;
  • Seo, Myung-Ji (Division of Bioengineering, Incheon National University)
  • Received : 2022.04.25
  • Accepted : 2022.05.23
  • Published : 2022.07.28

Abstract

The rising demand for carotenoids can be met by microbial biosynthesis as a promising alternative to chemical synthesis and plant extraction. Several species of lactic acid bacteria (LAB) specifically produce C30 carotenoids and offer the added probiotic benefit of improved gut health and protection against chronic conditions. In this study, the recently characterized Lactiplantibacillus plantarum subsp. plantarum KCCP11226T produced the rare C30 carotenoid, 4,4'-diaponeurosporene, and its yield was optimized for industrial production. The one-factor-at-a-time (OFAT) method was used to screen carbon and nitrogen sources, while the abiotic stresses of temperature, pH, and salinity, were evaluated for their effects on 4,4'-diaponeurosporene production. Lactose and beef extract were ideal for optimal carotenoid production at 25℃ incubation in pH 7.0 medium with no salt. The main factors influencing 4,4'-diaponeurosporene yields, namely lactose level, beef extract concentration and initial pH, were enhanced using the Box-Behnken design under response surface methodology (RSM). Compared to commercial MRS medium, there was a 3.3-fold increase in carotenoid production in the optimized conditions of 15% lactose, 8.3% beef extract and initial pH of 6.9, producing a 4,4'-diaponeurosporene concentration of 0.033 A470/ml. To substantiate upscaling for industrial application, the optimal aeration rate in a 5 L fermentor was 0.3 vvm. This resulted in a further 3.8-fold increase in 4,4'-diaponeurosporene production, with a concentration of 0.042 A470/ml, compared to the flask-scale cultivation in commercial MRS medium. The present work confirms the optimization and scale-up feasibility of enhanced 4,4'-diaponeurosporene production by L. plantarum subsp. plantarum KCCP11226T.

Keywords

Acknowledgement

This work was supported by Incheon National University Research Grant in 2020.

References

  1. Armstrong GA. 1997. Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu. Rev. Microbiol. 51: 629-659. https://doi.org/10.1146/annurev.micro.51.1.629
  2. Maoka T. 2020. Carotenoids as natural functional pigments. J. Nat. Med. 74: 1-16. https://doi.org/10.1007/s11418-019-01364-x
  3. Valla AR, Cartier DL, Labia R. 2004. Chemistry of natural retinoids and carotenoids: challenges for the future. Curr. Org. Synth. 1: 167-209. https://doi.org/10.2174/1570179043485394
  4. Li L, Furubayashi M, Wang S, Maoka T, Kawai-Noma S, Saito K, et al. 2019. Genetically engineered biosynthetic pathways for nonnatural C60 carotenoids using C5-elongases and C50-cyclases in Escherichia coli. Sci. Rep. 9: 2982.
  5. Seel W, Baust D, Sons D, Albers M, Etzbach L, Fuss J, et al. 2020. Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus. Sci. Rep. 10: 330.
  6. Martinez-Camara S, Ibanez A, Rubio S, Barreiro C, Barredo JL. 2021. Main carotenoids produced by microorganisms. Encyclopedia 1: 1223-1245. https://doi.org/10.3390/encyclopedia1040093
  7. Takemura M, Takagi C, Aikawa M, Araki K, Choi SK, Itaya M, et al. 2021. Heterologous production of novel and rare C30-carotenoids using Planococcus carotenoid biosynthesis genes. Microb. Cell Fact. 20: 194.
  8. Hagi T, Kobayashi M, Kawamoto S, Shima J, Nomura M. 2013. Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis. J. Appl. Microbiol. 114: 1763-1771. https://doi.org/10.1111/jam.12182
  9. Garrido-Fernandez J, Maldonado-Barragan A, Caballero-Guerrero B, Hornero-Mendez D, Ruiz-Barba JL. 2010. Carotenoid production in Lactobacillus plantarum. Int. J. Food Microbiol. 140: 34-39. https://doi.org/10.1016/j.ijfoodmicro.2010.02.015
  10. Turpin W, Renaud C, Avallone S, Hammoumi A, Guyot JP, Humblot C. 2016. PCR of crtNM combined with analytical biochemistry: An efficient way to identify carotenoid producing lactic acid bacteria. Syst. Appl. Microbiol. 39: 115-121. https://doi.org/10.1016/j.syapm.2015.12.003
  11. Marshall JH, Wilmoth GJ. 1981. Pigments of Staphylococcus aureus, a series of triterpenoid carotenoids. J. Bacteriol. 147: 900-913. https://doi.org/10.1128/jb.147.3.900-913.1981
  12. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, et al. 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 103: 15611-15616. https://doi.org/10.1073/pnas.0607117103
  13. Steiger S, Perez-Fons L, Cutting SM, Fraser PD, Sandmann G. 2015. Annotation and functional assignment of the genes for the C30 carotenoid pathways from the genomes of two bacteria: Bacillus indicus and Bacillus firmus. Microbiology 161: 194-202. https://doi.org/10.1099/mic.0.083519-0
  14. Liu H, Xu W, Chang X, Qin T, Yin Y, Yang Q. 2016. 4,4'-Diaponeurosporene, a C30 carotenoid, effectively activates dendritic cells via CD36 and NF-κB signaling in a ROS independent manner. Oncotarget 7: 40978-40991.
  15. Jing Y, Liu H, Xu W, Yang Q. 2019. 4,4'-Diaponeurosporene-producing Bacillus subtilis promotes the development of the mucosal immune system of the piglet gut. Anat. Rec. 302: 1800-1807. https://doi.org/10.1002/ar.24102
  16. Liu H, Xu W, Yu Q, Yang Q. 2017. 4,4'-Diaponeurosporene-producing Bacillus subtilis increased mouse resistance against Salmonella typhimurium infection in a CD36-dependent manner. Front. Immunol. 8: 483.
  17. Jiang Y, Zhang J, Zhao X, Zhao W, Yu Z, Chen C, et al. 2018. Complete genome sequencing of exopolysaccharide-producing Lactobacillus plantarum K25 provides genetic evidence for the probiotic functionality and cold endurance capacity of the strain. Biosci. Biotechnol. Biochem. 82: 1225-1233. https://doi.org/10.1080/09168451.2018.1453293
  18. Rijkers GT, Bengmark S, Enck P, Haller D, Herz U, Kalliomaki M, et al. 2010. Guidance for substantiating the evidence for beneficial effects of probiotics: current status and recommendations for future research. J. Nutr. 140: 671S-676S. https://doi.org/10.3945/jn.109.113779
  19. Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, et al. 2012. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 135: 1914-1919. https://doi.org/10.1016/j.foodchem.2012.06.048
  20. Kim M, Seo DH, Park YS, Cha IT, Seo MJ. 2019. Isolation of Lactobacillus plantarum subsp. plantarum producing C30 carotenoid 4,4'- diaponeurosporene and the assessment of its antioxidant activity. J. Microbiol. Biotechnol. 29: 1925-1930. https://doi.org/10.4014/jmb.1909.09007
  21. Kim M, Jung DH, Seo DH, Chung WH, Seo MJ. 2020. Genome analysis of Lactobacillus plantarum subsp. plantarum KCCP11226 reveals a well-conserved C30 carotenoid biosynthetic pathway. 3 Biotech 10: 150.
  22. Chandi GK, Gill BS. 2011. Production and characterization of microbial carotenoids as an alternative to synthetic colors: a review. Int. J. Food Prop. 14: 503-513. https://doi.org/10.1080/10942910903256956
  23. Lopez JC, Perez JS, Sevilla JF, Fernandez FA, Grima EM, Chisti Y. 2003. Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme Microb. Technol. 33: 270-277. https://doi.org/10.1016/S0141-0229(03)00130-3
  24. Kennedy M, Krouse D. 1999. Strategies for improving fermentation medium performance: a review. J. Ind. Microbiol. Biotechnol. 23: 456-475. https://doi.org/10.1038/sj.jim.2900755
  25. Nor NM, Mohamad R, Foo HL, Rahim RA. 2010. Improvement of folate biosynthesis by lactic acid bacteria using response surface methodology. Food Technol. Biotechnol. 48: 243-250.
  26. Chauhan K, Trivedi U, Patel KC. 2007. Statistical screening of medium components by Plackett-Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresour. Technol. 98: 98-103. https://doi.org/10.1016/j.biortech.2005.11.017
  27. Tung YT, Lee BH, Liu CF, Pan TM. 2011. Optimization of culture condition for ACEI and GABA production by lactic acid bacteria. J. Food Sci. 76: M585-M591. https://doi.org/10.1111/j.1750-3841.2011.02379.x
  28. Elsanhoty RM, Al-Turki I, Ramadan MF. 2012. Screening of medium components by Plackett-Burman design for carotenoid production using date (Phoenix dactylifera) wastes. Ind. Crops Prod. 36: 313-320. https://doi.org/10.1016/j.indcrop.2011.10.013
  29. Prabhu S, Rekha PD, Young CC, Hameed A, Lin SY, Arun AB. 2013. Zeaxanthin production by novel marine isolates from coastal sand of India and its antioxidant properties. Appl. Biochem. Biotechnol. 171: 817-831. https://doi.org/10.1007/s12010-013-0397-6
  30. Li XR, Tian GQ, Shen HJ, Liu JZ. 2015. Metabolic engineering of Escherichia coli to produce zeaxanthin. J. Ind. Microbiol. Biotechnol. 42: 627-636. https://doi.org/10.1007/s10295-014-1565-6
  31. El-Banna AA, El-Razek AMA, El-Mahdy AR. 2012. Some factors affecting the production of carotenoids by Rhodotorula glutinis var. glutinis. Food Nutr. Sci. 3: 64-71.
  32. Takaichi S, Ishidsu J. 1993. Influence of growth temperature on compositions of carotenoids and fatty acids from carotenoid glucoside ester and from cellular lipids in Rhodococcus rhodochrous RNMSI. Biosci. Biotechnol. Biochem. 57: 1886-1889. https://doi.org/10.1271/bbb.57.1886
  33. Hujanen M, Linko S, Linko YY, Leisola M. 2001. Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl. Microbiol. Biotechnol. 56: 126-130. https://doi.org/10.1007/s002530000501
  34. Shi F, Zhan W, Li Y, Wang X. 2014. Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma. World J. Microbiol. Biotechnol. 30: 125-133. https://doi.org/10.1007/s11274-013-1428-8
  35. Igreja WS, Maia FdA, Lopes AS, Chiste RC. 2021. Biotechnological production of carotenoids using low cost-substrates is influenced by cultivation parameters: a review. Int. J. Mol. Sci. 22: 8819.
  36. Elloumi W, Jebali A, Maalej A, Chamkha M, Sayadi S. 2020. Effect of mild salinity stress on the growth, fatty acid and carotenoid compositions, and biological activities of the thermal freshwater microalgae Scenedesmus sp. Biomolecules 10: 1515.
  37. Pisal DS, Lele SS. 2005. Carotenoid production from microalga, Dunaliella salina. Indian J. Biotechnol. 4: 476-483.
  38. Saejung C, Apaiwong P. 2015. Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2. Biotechnol. Bioprocess Eng. 20: 701-707. https://doi.org/10.1007/s12257-015-0015-2
  39. Sowmya R, Sachindra NM. 2015. Carotenoid production by Formosa sp. KMW, a marine bacteria of Flavobacteriaceae family: Influence of culture conditions and nutrient composition. Biocatal. Agric. Biotechnol. 4: 559-567. https://doi.org/10.1016/j.bcab.2015.08.018
  40. Calegari-Santos R, Diogo RA, Fontana JD, Bonfim TMB. 2016. Carotenoid production by halophilic archaea under different culture conditions. Curr. Microbiol. 72: 641-651. https://doi.org/10.1007/s00284-015-0974-8
  41. Ghelich R, Jahannama MR, Abdizadeh H, Torknik FS, Vaezi MR. 2019. Central composite design (CCD)-Response surface methodology (RSM) of effective electrospinning parameters on PVP-B-Hf hybrid nanofibrous composites for synthesis of HfB2- based composite nanofibers. Compos. B Eng. 166: 527-541. https://doi.org/10.1016/j.compositesb.2019.01.094
  42. Boon CS, McClements DJ, Weiss J, Decker EA. 2010. Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 50: 515-532. https://doi.org/10.1080/10408390802565889
  43. Aksu Z, Eren AT. 2007. Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochem. Eng. J. 35: 107-113. https://doi.org/10.1016/j.bej.2007.01.004
  44. Miyoshi A, Rochat T, Gratadoux JJ, Le Loir Y, Oliveira SC, Langella P, et al. 2003. Oxidative stress in Lactococcus lactis. Genet. Mol. Res. 2: 348-359.