DOI QR코드

DOI QR Code

Development of an automatic system for cultivating the bioluminescent heterotrophic dinoflagellate Noctiluca scintillans on a 100-liter scale

  • You, Ji Hyun (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Park, Sang Ah (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Ok, Jin Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Kang, Hee Chang (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Eom, Se Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Lim, An Suk (Division of Life Science & Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • Received : 2022.04.19
  • Accepted : 2022.06.08
  • Published : 2022.06.15

Abstract

Noctiluca scintillans is a heterotrophic dinoflagellate that causes red-colored oceans during the day (red tides) and glowing oceans at night (bioluminescence). This species feeds on diverse prey, including phytoplankton, heterotrophic protists, and eggs of metazoans. Thus, many scientists have conducted studies on the ecophysiology of this species. It is easy to cultivate N. scintillans at a scale of <1 L, but it is difficult to cultivate them at a scale of >100 L because N. scintillans cells usually stay near the surface, while prey cells stay below the surface in large water tanks. To obtain mass-cultured N. scintillans cells, we developed an automatic system for cultivating N. scintillans on a scale of 100 L. The system consisted of four tanks containing fresh nutrients, the chlorophyte Dunaliella salina as prey, N. scintillans for growth, and N. scintillans for storage, respectively. The light intensities supporting the high growth rates of D. salina and N. scintillans were 300 and 20 µmol photons m-2 s-1, respectively. Twenty liters of D. salina culture from the prey culture tank were transferred to the predator culture tank, and subsequently 20 L of nutrients from the nutrient tank were transferred to the prey culture tank every 2 d. When the volume of N. scintillans in the predator culture tank reached 90 L 6 d later, 70 L of the culture were transferred to the predator storage tank. To prevent N. scintillans cells from being separated from D. salina cells in the predator culture tank, the culture was mixed using an air pump, a sparger, and a stirrer. The highest abundance of N. scintillans in the predator culture tank was 45 cells mL-1, which was more than twice the highest abundance when this dinoflagellate was cultivated manually. This automatic system supplies 100 L of N. scintillans pure culture with a high density every 10 d for diverse experiments on N. scintillans.

Keywords

Acknowledgement

This research was supported by the Useful Dinoflagellate program of Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) and the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF- 2020M3F6A1110582; NRF-2021M3I6A1091272; NRF-2021R1A2C1093379) award to HJJ.

References

  1. Berdalet, E. 1992. Effects of turbulence on the marine dinoflagellate Gymnodinium nelsonii. J. Phycol. 28:267-272. https://doi.org/10.1111/j.0022-3646.1992.00267.x
  2. Bityukov, E. P. 1971. Bioluminescence in the wake current in the Atlantic Ocean and Mediterranean Sea. Okean 11:127-133.
  3. Buskey, E. J. 1995. Growth and bioluminescence of Noctiluca scintillans on varying algal diets. J. Plankton Res. 17:29-40. https://doi.org/10.1093/plankt/17.1.29
  4. Buskey, E. J., Strom, S. & Coulter, C. 1992. Biolumiscence of heterotrophic dinoflagellates from Texas coastal waters. J. Exp. Mar. Biol. Ecol. 159:37-49. https://doi.org/10.1016/0022-0981(92)90256-A
  5. Coats, D. W. 1999. Parasitic life styles of marine dinoflagellates. J. Eukaryot. Microbiol. 46:402-409. https://doi.org/10.1111/j.1550-7408.1999.tb04620.x
  6. Davy, S. K., Allemand, D. & Weis, V. M. 2012. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76:229-261. https://doi.org/10.1128/MMBR.05014-11
  7. Eom, S. H., Jeong, H. J., Ok, J. H., Park, S. A., Kang, H. C., You, J. H., Lee, S. Y., Yoo, Y. D., Lim, A. S. & Lee, M. J. 2021. Interactions between common heterotrophic protists and the dinoflagellate Tripos furca: implication on the long duration of its red tides in the South Sea of Korea in 2020. Algae 36:25-36. https://doi.org/10.4490/algae.2021.36.2.22
  8. Glibert, P. M., Burkholder, J. M. & Kana, T. M. 2012. Recent insights about relationships between nutrient availability, forms, and stoichiometry, and the distribution, ecophysiology, and food web effects of pelagic and benthic Prorocentrum species. Harmful Algae 14:231-259. https://doi.org/10.1016/j.hal.2011.10.023
  9. Guillard, R. R. & Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
  10. Gupta, P. L., Lee, S. -M. & Choi, H. -J. 2015. A mini review: photobioreactors for large scale algal cultivation. World J. Microbiol. Biotechnol. 31:1409-1417. https://doi.org/10.1007/s11274-015-1892-4
  11. Harrison, P. J., Furuya, K., Glibert, P. M., Xu, J., Liu, H. B., Yin, K., Lee, J. H. W., Anderson, D. M., Gowen, R., Al-Azri, A. R. & Ho, A. Y. T. 2011. Geographical distribution of red and green Noctiluca scintillans. Chin. J. Oceanol. Limnol. 29:807-831. https://doi.org/10.1007/s00343-011-0510-z
  12. Hastings, J. W. 1975. Dinoflagellate bioluminescence: molecular mechanisms and circadian control. In Lo Cicero, V. R. (Ed.) Proc. First Int. Conf. Toxic Dinoflagellate Blooms, The Massachusetts Science and Technology Foundation, Wakefield, pp. 235-248.
  13. Jacobson, D. M. & Anderson, D. M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32:279-285. https://doi.org/10.1111/j.0022-3646.1996.00279.x
  14. Jang, S. H., Jeong, H. J. & Kwon, J. E. 2017. High contents of eicosapentaenoic acid and docosahexaenoic acid in the mixotrophic dinoflagellate Paragymnodinium shiwhaense and identification of putative omega-3 biosynthetic genes. Algal Res. 25:525-537. https://doi.org/10.1016/j.algal.2017.06.020
  15. Jeong, H. J. 1995. The interactions between microzooplanktonic grazers and dinoflagellates causing red tides in the open coastal waters off southern California. Ph.D. dissertation, University of California, San Diego, CA, USA, 139 pp.
  16. Jeong, H. J., Kang, H. C., Lim, A. S., Jang, S. H., Lee, K., Lee, S. Y., Ok, J. H., You, J. H., Kim, J. H., Lee, K. H., Park, S. A., Eom, S. H., Yoo, Y. D. & Kim, K. Y. 2021. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 7:eabe4214. https://doi.org/10.1126/sciadv.abe4214
  17. Jeong, H. J. & Lim, A. S. 2020. Method and system for continuous mass culture for mixotrophic dinoflagellates. Patent no. KR102064718B1. Korean Intellectual Property Office, Daejeon.
  18. Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W., Nam, S. W., Yih, W. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609. https://doi.org/10.1073/pnas.1204302109
  19. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
  20. Jeong, H. J., Yoo, Y. D., Lee, K. H., Kim, T. H., Seong, K. A., Kang, N. S., Lee, S. Y., Kim, J. S., Kim, S. & Yih, W. H. 2013. Red tides in Masan Bay, Korea in 2004-2005: I. Daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 30(Suppl. 1):S75-S88. https://doi.org/10.1016/j.hal.2013.10.008
  21. Jeong, H. J., You, J. H., Lee, K. H., Kim, S. J. & Lee, S. Y. 2018. Feeding by common heterotrophic protists on the mixotrophic alga Gymnodinium smaydae (Dinophyceae), one of the fastest growing dinoflagellates. J. Phycol. 54:734-743. https://doi.org/10.1111/jpy.12775
  22. Jerney, J. & Spilling, K. 2018. Large scale cultivation of microalgae: open and closed systems. In Spilling, K. (Ed.) Biofuels from Algae: Methods and Protocols. Humana Press, New York, NY, pp. 1-8.
  23. Johnson, K. B. & Shanks, A. L. 2003. Low rates of predation on planktonic marine invertebrate larvae. Mar. Ecol. Prog. Ser. 248:125-139. https://doi.org/10.3354/meps248125
  24. Kimor, B. 1979. Predation by Noctiluca miliaris Souriray on Acartia tonsa Dana eggs in the inshore waters of southern California. Limnol. Oceanogr. 24:568-572. https://doi.org/10.4319/lo.1979.24.3.0568
  25. Kiorboe, T. & Titelman, J. 1998. Feeding, prey selection and prey encounter mechanisms in the heterotrophic dinoflagellate Noctiluca scintillans. J. Plankton Res. 20:1615-1636. https://doi.org/10.1093/plankt/20.8.1615
  26. Lee, K. H., Jeong, H. J., Yoon, E. Y., Jang, S. H., Kim, H. S. & Yih, W. 2014. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 29:153-163. https://doi.org/10.4490/algae.2014.29.2.153
  27. Lee, S. Y., Jeong, H. J., Kang, H. C., Ok, J. H., You, J. H., Park, S. A. & Eom, S. H. 2021. Comparison of the spatial-temporal distributions of the heterotrophic dinoflagellates Gyrodinium dominans, G. jinhaense, and G. moestrupii in Korean coastal waters. Algae 36:37-50. https://doi.org/10.4490/algae.2021.36.3.4
  28. Lim, A. S., Jeong, H. J., Jang, T. Y., Yoo, Y. D., Kang, N. S., Yoon, E. Y. & Kim, G. H. 2014. Feeding by the newly described heterotrophic dinoflagellate Stoeckeria changwonensis: a comparison with other species in the family Pfiesteriaceae. Harmful Algae 36:11-21. https://doi.org/10.1016/j.hal.2014.04.001
  29. Lim, A. S., Jeong, H. J., Kim, S. J. & Ok, J. H. 2018. Amino acids profiles of six dinoflagellate species belonging to diverse families: possible use as animal feeds in aquaculture. Algae 33:279-290. https://doi.org/10.4490/algae.2018.33.9.10
  30. Lim, A. S., Jeong, H. J., You, J. H. & Park, S. A. 2020. Semicontinuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production. Algae 35:277-292. https://doi.org/10.4490/algae.2020.35.9.2
  31. Loder, M. G. J., Kraberg, A. C., Aberle, N., Peters, S. & Wiltshire, K. H. 2012. Dinoflagellates and ciliates at Helgoland roads, North Sea. Helgol. Mar. Res. 66:11-23. https://doi.org/10.1007/s10152-010-0242-z
  32. Miyaguchi, H., Fujiki, T., Kikuchi, T., Kuwahara, V. S. & Toda, T. 2006. Relationship between the bloom of Noctiluca scintillans and environmental factors in the coastal waters of Sagami Bay, Japan. J. Plankton Res. 28:313-324. https://doi.org/10.1093/plankt/fbi127
  33. Morin, J. G. 1983. Coastal bioluminescence: patterns and functions. Bull. Mar. Sci. 33:787-817.
  34. Nakamura, Y. 1998. Growth and grazing of a large heterotrophic dinoflagellate, Noctiluca scintillans, in laboratory cultures. J. Plankton Res. 20:1711-1720. https://doi.org/10.1093/plankt/20.9.1711
  35. Ok, J. H., Jeong, H. J., Kang, H. C., Park, S. A., Eom, S. H., You, J. H. & Lee, S. Y. 2021. Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: I. spatiotemporal distribution in Korean coastal waters and growth and ingestion rates. Algae 36:263-283. https://doi.org/10.4490/algae.2021.36.11.28
  36. Onodera, K. -I., Konishi, Y., Taguchi, T., Kiyoto, S. & Tominaga, A. 2014. Peridinin from the marine symbiotic dinoflagellate, Symbiodinium sp., regulates eosinophilia in mice. Mar. Drugs 12:1773-1787. https://doi.org/10.3390/md12041773
  37. Park, M. G., Kim, S., Shin, E. -Y., Yih, W. & Coats, D. W. 2013. Parasitism of harmful dinoflagellates in Korean coastal waters. Harmful Algae 30(Suppl 1):S62-S74. https://doi.org/10.1016/j.hal.2013.10.007
  38. Park, S. A., Jeong, H. J., Ok, J. H., Kang, H. C., You, J. H., Eom, S. H. & Park, E. C. 2021a. Interactions between the kleptoplastidic dinoflagellate Shimiella gracilenta and several common heterotrophic protists. Front. Mar. Sci. 8:738547. https://doi.org/10.3389/fmars.2021.738547
  39. Park, S. A., Jeong, H. J., Ok, J. H., Kang, H. C., You, J. H., Eom, S. H., Yoo, Y. D. & Lee, M. J. 2021b. Bioluminescence capability and intensity in the dinoflagellate Alexandrium species. Algae 36:299-314. https://doi.org/10.4490/algae.2021.36.12.6
  40. Rohr, J., Latz, M. I., Fallon, S., Nauen, J. C. & Hendricks, E. 1998. Experimental approaches towards interpreting dolphin-stimulated bioluminescence. J. Exp. Biol. 201: 1447-1460. https://doi.org/10.1242/jeb.201.9.1447
  41. Sellers, C. G., Gast, R. J. & Sanders, R. W. 2014. Selective feeding and foreign plastid retention in an Antarctic dinoflagellate. J. Phycol. 50:1081-1088. https://doi.org/10.1111/jpy.12240
  42. Spilling, K., Olli, K., Lehtoranta, J., Kremp, A., Tedesco, L., Tamelander, T., Klais, R., Peltonen, H. & Tamminen, T. 2018. Shifting diatom: dinoflagellate dominance during spring bloom in the Baltic Sea and its potential effects on biogeochemical cycling. Front. Mar. Sci. 5:327. https://doi.org/10.3389/fmars.2018.00327
  43. Stauffer, B. A., Gellene, A. G., Rico, D., Sur, C. & Caron, D. A. 2017. Grazing of the heterotrophic dinoflagellate Noctiluca scintillans on dinoflagellate and raphidophyte prey. Aquat. Microb. Ecol. 80:193-207. https://doi.org/10.3354/ame01849
  44. Sugawara, T., Yamashita, K., Sakai, S., Asai, A., Nagao, A., Shiraishi, T., Imai, I. & Hirata, T. 2007. Induction of apoptosis in DLD-1 human colon cancer cells by peridinin isolated from the dinoflagellate, Heterocapsa triquetra. Biosci. Biotechnol. Biochem. 71:1069-1072. https://doi.org/10.1271/bbb.60597
  45. Sweeney, B. M. 1971. Laboratory studies of a green Noctiluca from New Guinea. J. Phycol. 7:53-58.
  46. Tada, K., Pithakpol, S. & Montani, S. 2004. Seasonal variation in the abundance of Noctiluca scintillans in the Seto Inland Sea, Japan. Plankton Biol. Ecol. 51:7-14.
  47. Tarasov, N. I. 1956. Marine luminescence. Naval Oceanographic Office, Report No. NOOT-21. National Space Technology Laboratories Station, Bay St. Louis, MO, 183 pp.
  48. Tett, P. B. 1971. The relation between dinoflagellates and the bioluminescence of sea water. J. Mar. Biol. Assoc. U. K. 51:183-206. https://doi.org/10.1017/S002531540000655X
  49. Thomas, W. H. & Gibson, C. H. 1990. Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax polyedra Stein. Deep Sea Res. Part A Oceanogr. Res. Pap. 37:1583-1593. https://doi.org/10.1016/0198-0149(90)90063-2
  50. Turkoglu, M. 2013. Red tides of the dinoflagellate Noctiluca scintillans associated with eutrophication in the Sea of Marmara (the Dardanelles, Turkey). Oceanologia 55:709-732. https://doi.org/10.5697/oc.55-3.709
  51. Uhlig, G. & Sahling, G. 1990. Long-term studies on Noctiluca scintillans in the German Bight population dynamics and red tide phenomena 1968-1988. Neth. J. Sea Res. 25:101-112. https://doi.org/10.1016/0077-7579(90)90012-6
  52. Valiadi, M., de Rond, T., Amorim, A., Gittins, J. R., Gubili, C., Moore, B. S., Iglesias-Rodriguez, D. & Latz, M. I. 2019. Molecular and biochemical basis for the loss of bioluminescence in the dinoflagellate Noctiluca scintillans along the west coast of the USA. Limnol. Oceanogr. 64:2709-2724. https://doi.org/10.1002/lno.11309
  53. Valiadi, M. & Iglesias-Rodriguez, D. 2013. Understanding bioluminescence in dinoflagellates: how far have we come? Microorganisms 1:3-25. https://doi.org/10.3390/microorganisms1010003
  54. Valiadi, M. & Iglesias-Rodriguez, M. D. 2014. Diversity of the luciferin binding protein gene in bioluminescent dinoflagellates: insights from a new gene in Noctiluca scintillans and sequences from Gonyaulacoid genera. J. Eukaryot. Microbiol. 61:134-145. https://doi.org/10.1111/jeu.12091
  55. Williams, T. M. & Kooyman, G. L. 1985. Swimming performance and hydrodynamic characteristics of harbor seals Phoca vitulina. Physiol. Zool. 58:576-589. https://doi.org/10.1086/physzool.58.5.30158584
  56. Wynn, J. P. & Ratledge, C. 2005. Oils from microorganisms. In Shahidi, F. (Ed.) Bailey's Industrial Oil and Fat Products. John Wiley & Sons, Hoboken, NJ, pp. 121-153.
  57. You, J. H., Jeong, H. J., Kang, H. C., Ok, J. H., Park, S. A. & Lim, A. S. 2020. Feeding by common heterotrophic protist predators on seven Prorocentrum species. Algae 35:61-78. https://doi.org/10.4490/algae.2020.35.2.28
  58. Zhang, S., Liu, H., Guo, C. & Harrison, P. J. 2016. Differential feeding and growth of Noctiluca scintillans on monospecific and mixed diets. Mar. Ecol. Prog. Ser. 549:27-40. https://doi.org/10.3354/meps11702