DOI QR코드

DOI QR Code

Statistical optimization of phytol and polyunsaturated fatty acid production in the Antarctic microalga Micractinium variabile KSF0031

  • Kim, Eun Jae (Division of Life Sciences, Korea Polar Research Institute) ;
  • Chae, Hyunsik (Division of Life Sciences, Korea Polar Research Institute) ;
  • Koo, Man Hyung (Research Unit of Cryogenic Novel Material, Korea Polar Research Institute) ;
  • Yu, Jihyeon (Division of Life Sciences, Korea Polar Research Institute) ;
  • Kim, Hyunjoong (Division of Life Sciences, Korea Polar Research Institute) ;
  • Cho, Sung Mi (Division of Life Sciences, Korea Polar Research Institute) ;
  • Hong, Kwang Won (R&D Department, Microalgae Ask Us Co., Ltd.) ;
  • Lee, Joo Young (Department of Polar Sciences, University of Science and Technology) ;
  • Youn, Ui Joung (Division of Life Sciences, Korea Polar Research Institute) ;
  • Kim, Sanghee (Division of Life Sciences, Korea Polar Research Institute) ;
  • Choi, Han-Gu (Division of Life Sciences, Korea Polar Research Institute) ;
  • Han, Se Jong (Division of Life Sciences, Korea Polar Research Institute)
  • Received : 2021.10.20
  • Accepted : 2022.04.01
  • Published : 2022.06.15

Abstract

Polar microorganisms produce physiologically active substances to adapt to harsh environments, and these substances can be used as biomedical compounds. The green microalga Micractinium variabile KSF0031, which was isolated from Antarctica, produced phytol, a natural antimicrobial agent. Furthermore, several polyunsaturated fatty acids (PUFAs), including omega-3, exhibit antioxidant properties. Here statistical methods (Plackett-Burman design and Box-Behnken design) were used to optimize the culture medium of KSF0031 to improve biomass production, and K2HPO4, MgSO4·7H 2O, and ammonium ferric citrate green (AFCg) were selected as significant components of the culture medium. Changes in the concentration of K2HPO4 and MgSO4·7H 2O as positive factors and AFCg as a negative factor affected cell growth to a remarkable degree. The biomass production in a 100 L culture using the optimized medium for 24 d at 18℃ was improved by 37.5% compared to that obtained using the original BG-11 medium. The quantities of PUFAs and phytol obtained were 13 mg g-1 dry cell weight (DCW) and 10.98 mg g-1 DCW, which represent improved yields of 11.70% and 48.78%, respectively. The results of this study could contribute to an improved production of phytol and fatty acids from Antarctic microalgae in the biomedical industry.

Keywords

Acknowledgement

The research was supported by Grants from the Korea Polar Research Institute (PE22140 and PE19910).

References

  1. Abou-Shanab, R. A. I., El-Dalatony, M. M., El-Sheekh, M. M., Ji, M. -K., Salama, E. -S., Kabra, A. N. & Jeon, B. -H. 2014. Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol. Bioprocess Eng. 19:510-518. https://doi.org/10.1007/s12257-013-0485-z
  2. Barker, P. F., Filippelli, G. M., Florindo, F., Martin, E. E. & Scher, H. D. 2007. Onset and role of the Antarctic Circumpolar Current. Deep Sea Res. Part II Top. Stud. Oceanogr. 54:2388-2398. https://doi.org/10.1016/j.dsr2.2007.07.028
  3. Borchert, E., Jackson, S. A., O'Gara, F. & Dobson, A. D. W. 2017. Psychrophiles as a source of novel antimicrobials. In Margesin, R. (Ed.) Psychrophiles: from Biodiversity to Biotechnology. Springer, Cham, pp. 527-540.
  4. Box, G. E. P. & Behnken, D. W. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2:455-475. https://doi.org/10.1080/00401706.1960.10489912
  5. Brouchkov, A., Melnikov, V., Kalenova, L., Fursova, O., Pogorelko, G., Potapov, V., Fursova, N., Ignatov, S., Brenner, E., Bezrukov, V. & Muradian, K. 2017. Permafrost bacteria in biotechnology: biomedical applications. In Margesin, R. (Ed.) Psychrophiles: from Biodiversity to Biotechnology. Springer, Cham, pp. 541-554.
  6. Chae, H., Lim, S., Kim, H. S., Choi, H. -G. & Kim, J. H. 2019. Morphology and phylogenetic relationships of Micractinium (Chlorellaceae, Trebouxiophyceae) taxa, including three new species from Antarctica. Algae 34:267-275. https://doi.org/10.4490/algae.2019.34.10.15
  7. Cho, S. M., Kim, S., Cho, H., Lee, H., Lee, J. H., Lee, H., Park, H., Kang, S., Choi, H. -G. & Lee, J. 2019. Type II ice-binding proteins isolated from an arctic microalga are similar to adhesin-like proteins and increase freezing tolerance in transgenic plants. Plant Cell Physiol. 60:2744-2757. https://doi.org/10.1093/pcp/pcz162
  8. Chowdhury, R. R., Fitch, R. W. & Ghosh, S. K. 2013. Efficacy of phytol-derived diterpenoid immunoadjuvants over alum in shaping the murine host's immune response to Staphylococcus aureus. Vaccine 31:1178-1186. https://doi.org/10.1016/j.vaccine.2012.12.069
  9. Czyrski, A. & Sznura, J. 2019. The application of Box-Behnken-Design in the optimization of HPLC separation of fluoroquinolones. Sci. Rep. 9:19458. https://doi.org/10.1038/s41598-019-55761-z
  10. Ekpenyong, M. G., Antai, S. P., Asitok, A. D. & Ekpo, B. O. 2017. Plackett-Burman design and response surface optimization of medium trace nutrients for glycolipopeptide biosurfactant production. Iran. Biomed. J. 21:249-260. https://doi.org/10.18869/acadpub.ibj.21.4.249
  11. Elshobary, M. E., Abo-Shady, A. M., Khairy, H. M., Essa, D., Zabed, H. M., Qi, X. & Abomohra, A. E. -F. 2019. Influence of nutrient supplementation and starvation conditions on the biomass and lipid productivities of Micractinium reisseri grown in wastewater for biodiesel production. J. Environ. Manage. 250:109529. https://doi.org/10.1016/j.jenvman.2019.109529
  12. Ghaneian, M. T., Ehrampoush, M. H., Jebali, A., Hekmatimoghaddam, S. & Mahmoudi, M. 2015. Antimicrobial activity, toxicity and stability of phytol as a novel surface disinfectant. Environ. Health Eng. Manag. J. 2:13-16.
  13. Gutierrez, S., Svahn, S. L. & Johansson, M. E. 2019. Effects of omega-3 fatty acids on immune cells. Int. J. Mol. Sci. 20:5028. https://doi.org/10.3390/ijms20205028
  14. Islam, M. T., de Alencar, M. V. O. B., da Conceicao Machado, K., da Conceicao Machado, K., de Carvalho Melo-Cavalcante, A. A., de Sousa, D. P. & de Freitas, R. M. 2015. Phytol in a pharma-medico-stance. Chem. Biol. Interact. 240:60-73. https://doi.org/10.1016/j.cbi.2015.07.010
  15. Jaafari, J. & Yaghmaeian, K. 2019. Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere 217:447-455. https://doi.org/10.1016/j.chemosphere.2018.10.205
  16. Jo, S. -W., Kang, N. -S., Chae, H., Lee, J. A., Kim, K. M., Yoon, M., Hong, J. W. & Yoon, H. -S. 2020. First record of a marine microalgal species, Micractinium singularis (Trebouxiophyceae) isolated from Janghang Harbor, Korea. Korean J. Environ. Biol. 38:61-70. https://doi.org/10.11626/KJEB.2020.38.1.061
  17. Khan, M. I., Shin, J. H. & Kim, J. D. 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17:36. https://doi.org/10.1186/s12934-018-0879-x
  18. Kim, E. J., Jung, W., Lim, S., Kim, S., Han, S. J. & Choi, H. -G. 2016. Growth and lipid content at low temperature of Arctic alga Chlamydomonas sp. KNM0029C. Bioprocess Biosyst. Eng. 39:151-157. https://doi.org/10.1007/s00449-015-1499-z
  19. Kim, E. J., Lee, J. H., Lee, S. G. & Han, S. J. 2017. Improving thermal hysteresis activity of antifreeze protein from recombinant Pichia pastoris by removal of N-glycosylation. Prep. Biochem. Biotechnol. 47:299-304. https://doi.org/10.1080/10826068.2016.1244682
  20. Komiya, T., Kyohkon, M., Ohwaki, S., Eto, J., Katsuzaki, H., Imai, K., Kataoka, T., Yoshioka, K., Ishii, Y. & Hibasami, H. 1999. Phytol induces programmed cell death in human lymphoid leukemia Molt 4B cells. Int. J. Mol. Med. 4:377-380.
  21. Murbach Teles Andrade, B. F., Nunes Barbosa, L., da Silva Probst, I. & Fernandes Junior, A. 2014. Antimicrobial activity of essential oils. J. Essent. Oil Res. 26:34-40. https://doi.org/10.1080/10412905.2013.860409
  22. Park, H. J., Lee, C. W., Kim, D., Do, H., Han, S. J., Kim, J. E., Koo, B. -H., Lee, J. H. & Yim, J. H. 2018. Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 A resolution: structural adaptations to cold and functional analysis of a laundry detergent enzyme. PLoS ONE 13:e0191740. https://doi.org/10.1371/journal.pone.0191740
  23. Plackett, R. L. & Burman, J. P. 1946. The design of optimum multifactorial experiments. Biometrika 33:305-325. https://doi.org/10.1093/biomet/33.4.305
  24. Prabuseenivasan, S., Jayakumar, M. & Ignacimuthu, S. 2006. In vitro antibacterial activity of some plant essential oils. BMC Complement. Alternat. Med. 6:39. https://doi.org/10.1186/1472-6882-6-39
  25. Remize, M., Brunel, Y., Silva, J. L., Berthon, J. -Y. & Filaire, E. 2021. Microalgae n-3 PUFAs production and use in food and feed industries. Mar. Drugs 19:113. https://doi.org/10.3390/md19020113
  26. Rodriguez-Garcia, I. & Guil-Guerrero, J. L. 2008. Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of foods. Food Chem. 108:1023-1026. https://doi.org/10.1016/j.foodchem.2007.11.059
  27. Siram, K., Rahman, S. M. H., Balakumar, K., Duganath, N., Chandrasekar, R. & Hariprasad, R. 2019. Pharmaceutical nanotechnology: brief perspective on lipid drug delivery and its current scenario. In Andrew, W. (Ed.) Biomedical Applications of Nanoparticles. William Andrew Publishing, New York, pp. 91-115.
  28. Sorokina, K. N., Samoylova, Y. V., Gromov, N. V., Ogorodnikova, O. L. & Parmon, V. N. 2020. Production of biodiesel and succinic acid from the biomass of the microalga Micractinium sp. IC-44. Bioresour. Technol. 317:124026. https://doi.org/10.1016/j.biortech.2020.124026
  29. Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. 1971. Purification and properties of unicellular bluegreen algae (order Chroococcales). Bacteriol. Rev. 35: 171-205. https://doi.org/10.1128/br.35.2.171-205.1971
  30. Subramaniyam, V., Subashchandrabose, S. R., Thavamani, P., Chen, Z., Krishnamurti, G. S. R., Naidu, R. & Megharaj, M. 2016. Toxicity and bioaccumulation of iron in soil microalgae. J. Appl. Phycol. 28:2767-2776. https://doi.org/10.1007/s10811-016-0837-0
  31. Suh, S. -S., Hong, J. -M., Kim, E. J., Jung, S. W., Chae, H., Kim, J. E., Jim, J. H., Kim, I. -C. & Kim, S. 2019. Antarctic freshwater microalga, Chloromonas reticulata, suppresses inflammation and carcinogenesis. Int. J. Med. Sci. 16:189-197. https://doi.org/10.7150/ijms.30647
  32. Suh, S. -S., Hong, J. -M., Kim, E. J., Jung, S. W., Kim, S. -M., Kim, J. E., Kim, I. -C. & Kim, S. 2018. Anti-inflammation and anti-cancer activity of ethanol extract of antarctic freshwater microalga, Micractinium sp. Int. J. Med. Sci. 15:929-936. https://doi.org/10.7150/ijms.26410
  33. Teoh, M. -L., Chu, W. -L., Marchant, H. & Phang, S. -M. 2004. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Appl. Phycol. 16:421-430. https://doi.org/10.1007/s10811-004-5502-3