References
- Altai, S. (2019), "Experimental and analytical investigation of localization and post-peak behavior of steel members in tension", Ph.D. Dissertation, University of Missouri-Columbia, Columbia.
- Altai, S., Orton, S. and Chen, Z. (2019), "Effect of the post-peak behavior on collapse of structural systems", Structures Congress 2019: Blast, Impact Loading, and Research and Education, American Society of Civil Engineers, Reston, VA. https://doi.org/10.1061/9780784482247.011.
- Altai, S., Orton, S. and Chen, Z. (2020), "Evolution of localization length during postpeak response of steel in tension: Experimental study", J. Eng. Mech., 146(7), 04020069. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001804.
- Antolovich, S.D. and Armstrong, R.W. (2014), "Plastic strain localization in metals: Origins and consequences", Prog. Mater. Sci., 59(1), 1-160. https://doi.org/10.1016/J.PMATSCI.2013.06.001.
- Armero, F. and Ehrlich, D. (2006), "Numerical modeling of softening hinges in thin Euler-Bernoulli beams", Comput. Struct., 84(10-11), 641-656. https://doi.org/10.1016/J.COMPSTRUC.2005.11.010.
- Audoly, B. and Hutchinson, J.W. (2016), "Analysis of necking based on a one-dimensional model", J. Mech. Phys. Solid., 97, 68-91. https://doi.org/10.1016/j.jmps.2015.12.018.
- Bao, C., Francois, M. and Le Joncour, L. (2016), "A closer look at the diffuse and localised necking of a metallic thin sheet: Evolution of the two bands pattern", Strain, 52(3), 244-260. https://doi.org/10.1111/str.12184.
- Bazant, Z.P. (2003a), "Asymptotic matching analysis of structural failure due to softening hinges. 2: Implications", ASCE J. Eng. Mech., 129, 651-654. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:6(651)
- Bazant, Z.P. (2003b), "Asymptotic matching analysis of scaling of structural failure due to softening hinges. II: Implications", J. Eng. Mech., 129(6), 651-654. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:6(651).
- Bazant, Z.P. and Cedolin, L. (2010), "Stability of structures", Elastic, Inelastic, Fracture and Damage Theories, 1st Edition, Oxford University Press, New York.
- Bigoni, D. (2012), Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability, Cambridge University Press.
- Challamel, N., Lanos, C. and Casandjian, C. (2008), "Plastic failure of nonlocal beams", Phys. Rev. E-Statist. Nonlin. Soft Matter. Phys., 78(2), 026604. https://doi.org/10.1103/PhysRevE.78.026604.
- Chen, Z. and Schreyer, H.L.L. (1990), "A numerical solution scheme for softening problems involving total strain control", Comput. Struct., 37(6), 1043-1050. https://doi.org/10.1016/0045-7949(90)90016-U.
- Chen, Z., Gan, Y. and Labuz, J.F. (2008), "Analytical and numerical study of the size effect on the failure response of hierarchical structures", Int. J. Multisc. Comput. Eng., 6(4), 339-348. https://doi.org/10.1615/IntJMultCompEng.v6.i4.50
- Coleman, J. and Spacone, E. (2001), "Localization issues in forcebased frame elements", J. Struct. Eng., 127(11), 1257-1265. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:11(1257).
- Dai, H.H., Zhu, X. and Chen, Z. (2011), "An analytical study on the post-peak structural response", J. Appl. Mech., 78(4), 044501. https://doi.org/10.1115/1.4003740.
- del Piero, G., Lancioni, G. and March, R. (2013), "A diffuse cohesive energy approach to fracture and plasticity: The onedimensional case", J. Mech. Mater. Struct., 8(2-4), 109-151. https://doi.org/10.2140/jomms.2013.8.109.
- di. Luzio, G. (2007), "A symmetric over-nonlocal microplane model M4 for fracture in concrete", Int. J. Solid. Struct., 44(13), 4418-4441. https://doi.org/10.1016/j.ijsolstr.2006.11.030.
- Engelen, R.A.B., Fleck, N.A., Peerlings, R.H.J. and Geers, M.G.D. (2006), "An evaluation of higher-order plasticity theories for predicting size effects and localisation", Int. J. Solid. Struct., 43(7-8), 1857-1877. https://doi.org/10.1016/j.ijsolstr.2004.05.072.
- Engelen, R.A.B., Geers, M.G.D. and Baaijens, F.P.T. (2002), "Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour", Int. J. Plast., 19(4), 403-433. https://doi.org/10.1016/S0749-6419(01)00042-0.
- Huang, M., Qu, X. and Lu, X. (2017), "Regularized finite element modeling of progressive failure in soils within nonlocal softening plasticity", Comput. Mech., 62(3), 347-358. https://doi.org/10.1007/S00466-017-1500-6.
- Jacques, N. and Rodriguez-Martinez, J. A. (2021), "Influence on strain-rate history effects on the development of necking instabilities under dynamic loading conditions", Int. J. Solid. Struct., 230-231, 111152. https://doi.org/10.1016/J.IJSOLSTR.2021.111152.
- Jirasek, M. (2004), "Nonlocal theories in continuum mechanics", Acta Polytechnica, 44(5), 16-34. https://doi.org/10.14311/610.
- Jirasek, M. and Rolshoven, S. (2003), "Comparison of integraltype nonlocal plasticity models for strain-softening materials", Int. J. Eng. Sci., 41(13-14), 1553-1602. https://doi.org/10.1016/S0020-7225(03)00027-2.
- Jirsek, M. (1997), "Analytical and numerical solutions for frames with softening hinges", J. Eng. Mech., 123(1), 8-14. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:1(8).
- Kolwankar, S., Kanvinde, A., Kenawy, M. and Kunnath, S. (2017), "Uniaxial nonlocal formulation for geometric nonlinearity-induced necking and buckling localization in a steel bar", J. Struct. Eng., 143(9), 1-13. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001827.
- Kolwankar, S., Kanvinde, A., Kenawy, M., Lignos, D. and Kunnath, S. (2018), "Simulating local buckling-induced softening in steel members using an equivalent nonlocal material model in displacement-based fiber elements", J. Struct. Eng., 144(10), 04018192. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002189.
- Lancioni, G. (2015), "Modeling the response of tensile steel bars by means of incremental energy minimization", J. Elast., 121(1), 25-54. https://doi.org/10.1007/s10659-015-9515-8.
- Lancioni, G. and Corinaldesi, V. (2016), "Localized versus diffuse damage: A variational approach", AIP Conf. Proc., 1769, 160013. https://doi.org/10.1063/1.4963556.
- Lancioni, G., Yalcinkaya, T. and Cocks, A. (2015a), "Energybased non-local plasticity models for deformation patterning, localization and fracture", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 471(2180), 20150275. https://doi.org/10.1098/rspa.2015.0275.
- Lancioni, G., Yalcinkaya, T. and Cocks, A. (2015b), "Energybased non-local plasticity models for deformation patterning, localization and fracture", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 471(2180), 20150275. https://doi.org/10.1098/rspa.2015.0275.
- Lestringant, C. and Audoly, B. (2020), "A one-dimensional model for elasto-capillary necking", Proc. Roy. Soc. A, 476(2240), 20200337. https://doi.org/10.1098/RSPA.2020.0337.
- Li, Y. and Karr, D.G. (2009), "Prediction of ductile fracture in tension by bifurcation, localization, and imperfection analyses", Int. J. Plast., 25(6), 1128-1153. https://doi.org/10.1016/j.ijplas.2008.07.001.
- Lu, X., Bardet, J.P. and Huang, M. (2009), "Numerical solutions of strain localization with nonlocal softening plasticity", Comput. Meth. Appl. Mech. Eng., 198(47-48), 3702-3711. https://doi.org/10.1016/J.CMA.2009.08.002.
- Lu, X., Bardet, J.P. and Huang, M. (2010), "Length scales interaction in nonlocal plastic strain localization of bars of varying section", J. Eng. Mech., 136(8), 1036-1042. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000145.
- Peerlings, R.H.J., Geers, M.G.D., de Borst, R. and Brekelmans, W.A.M. (2001), "A critical comparison of nonlocal and gradient-enhanced softening continua", Int. J. Solid. Struct., 38(44-45), 7723-7746. https://doi.org/10.1016/S0020-7683(01)00087-7.
- Pijaudier-Cabot, G. and Bazant, Z.P. (1988), "Nonlocal damage theory", J. Eng. Mech., 113(10), 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
- Rolshoven, S. and Jirasek, M. (2002), "Nonlocal formulations of softening plasticity", WCCMV, Fifth World Congress on Computational Mechanics, 1-10.
- Salehi, M. and Sideris, P. (2017), "Refined gradient inelastic flexibility-based formulation for members subjected to arbitrary loading", J. Eng. Mech., 143(9), 1-18. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001288.
- Salehi, M., Sideris, P. and Liel, A.B. (2020), "Assessing damage and collapse capacity of reinforced concrete structures using the gradient inelastic beam element formulation", Eng. Struct., 225, 111290. https://doi.org/10.1016/J.ENGSTRUCT.2020.111290.
- Schreyer, H.L. and Chen, Z. (1986), "One-dimensional softening with localization", J. Appl. Mech., 53(4), 791. https://doi.org/10.1115/1.3171860.
- Sideris, P. and Salehi, M. (2016), "A gradient inelastic flexibilitybased frame element formulation", J. Eng. Mech., 142(7), 1-14. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001083.
- Stromberg, L. (2008), "A special case of equivalence between nonlocal plasticity and gradient plasticity in a one-dimensional formulation", Int. J. Eng. Sci., 46(8), 835-841. https://doi.org/10.1016/j.ijengsci.2008.01.019.
- Valipour, H.R. and Foster, S.J. (2009), "Nonlocal damage formulation for a flexibility-based frame element", J. Struct. Eng., 135(10), 1213-1221. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000054.
- Wackerfuss, J. (2008), "Efficient finite element formulation for the analysis of localized failure in beam structures", Int. J. Numer. Meth. Eng., 73(9), 1217-1250. https://doi.org/10.1002/nme.2116.
- Wu, S. and Wang, X. (2010), "Mesh dependence and nonlocal regularization of one-dimensional strain softening plasticity", J. Eng. Mech., 136(11), 1354-1365. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000184.
- Yalcinkaya, T. and Lancioni, G. (2014), "Energy-based modeling of localization and necking in plasticity", Procedia Mater. Sci., 3, 1618-1625. https://doi.org/10.1016/j.mspro.2014.06.261.
- Zhang, G. and Khandelwal, K. (2016), "Modeling of nonlocal damage-plasticity in beams using isogeometric analysis", Computer. Struct., 165, 76-95. https://doi.org/10.1016/j.compstruc.2015.12.006.
- Zhu, Y., Kanvinde, A. and Pan, Z. (2019), "Analysis of postnecking behavior in structural steels using a one-dimensional nonlocal model", Eng. Struct., 180, 321-331. https://doi.org/10.1016/j.engstruct.2018.11.050.