DOI QR코드

DOI QR Code

Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models

  • Berradia, Mohammed (Department of Civil Engineering, Laboratory of Structures, Geotechnics and Risks (LSGR), Hassiba Benbouali University of Chlef) ;
  • Azab, Marc (College of Engineering and Technology, American University of the Middle East) ;
  • Ahmad, Zeeshan (Department of Civil Engineering, University of Engineering and Technology) ;
  • Accouche, Oussama (College of Engineering and Technology, American University of the Middle East) ;
  • Raza, Ali (Department of Civil Engineering, Laboratory of Structures, Geotechnics and Risks (LSGR), Hassiba Benbouali University of Chlef) ;
  • Alashker, Yasser (Civil Engineering Department, College of Engineering, King Khalid University)
  • Received : 2022.01.30
  • Accepted : 2022.06.11
  • Published : 2022.08.25

Abstract

The strength models for fiber-reinforced polymer (FRP)-confined normal strength concrete (NC) cylinders available in the literature have been suggested based on small databases using limited variables of such structural members portraying less accuracy. The artificial neural network (ANN) is an advanced technique for precisely predicting the response of composite structures by considering a large number of parameters. The main objective of the present investigation is to develop an ANN model for the axial strength of FRP-confined NC cylinders using various parameters to give the highest accuracy of the predictions. To secure this aim, a large experimental database of 313 FRP-confined NC cylinders has been constructed from previous research investigations. An evaluation of 33 different empirical strength models has been performed using various statistical parameters (root mean squared error RMSE, mean absolute error MAE, and coefficient of determination R2) over the developed database. Then, a new ANN model using the Group Method of Data Handling (GMDH) has been proposed based on the experimental database that portrayed the highest performance as compared with the previous models with R2=0.92, RMSE=0.27, and MAE=0.33. Therefore, the suggested ANN model can accurately capture the axial strength of FRP-confined NC cylinders that can be used for the further analysis and design of such members in the construction industry.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups Project under grant number R.G.P.1/221/43.

References

  1. Abbaszadeh, M.A. and Sharbatdar, M. (2020), "Modeling of confined circular concrete columns wrapped by fiber reinforced polymer using artificial neural network", J. Soft Comput. Civil Eng., 4(4), 61-78. https://doi/org/10.22115/SCCE.2020.213196.1153.
  2. Abdollahi, B., Bakhshi, M., Motavalli, M. and Shekarchi, M. (2007), "Experimental modeling of GFRP confined concrete cylinders subjected to axial loads", Proceedings of the 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures.
  3. Ahmad, A., Khan, Q.U.Z. and Raza, A. (2020), "Reliability analysis of strength models for CFRP-confined concrete cylinders", Compos. Struct., 244, 112312. https://doi.org/10.1016/j.compstruct.2020.112312.
  4. Ahmed, S.K. (2018), "Ultimate strength and axial strain of FRP strengthened circular concrete columns", Cogent Eng., 5(1), 1501971. https://doi.org/10.1080/23311916.2018.1501971.
  5. Aire, C., Gettu, R. and Casas, J. (2001), "Study of the compressive behavior of concrete confined by fiber reinforced composites", carbon 1.
  6. Ali, L., Nawaz, A., Bai, Y., Raza, A., Anwar, M.K., Raheel Shah, S.A., and Raza, S.S. (2020), "Numerical simulations of GFRPreinforced columns having polypropylene and polyvinyl alcohol fibers", Complex., 2020, Article ID 8841795. https://doi.org/10.1155/2020/8841795.
  7. Anwar, M.K., Shah, S.A.R., Azab, M., Shah, I., Chauhan, M.K.S. and Iqbal, F. (2022), "Structural performance of GFRP bars based high-strength RC columns: An application of advanced decision-making mechanism for experimental profile data", Build., 12(5), 611. https://doi.org/10.3390/buildings12050611.
  8. Arabshahi, A., Gharaei-Moghaddam, N. and Tavakkolizadeh, M. (2019), "Proposition of new applicable strength models for concrete columns confined with fiber reinforced polymers", SN Appl. Sci., 1(12), 1-28. https://doi.org/10.1007/s42452-019-1643-5.
  9. Aslam, H.M.U., Khan, Q.U.Z., Sami, A. and Raza, A. (2021), "Axial compressive behavior of damaged steel and GFRP bars reinforced concrete columns retrofitted with CFRP laminates", Compos. Struct., 258, 113206. https://doi.org/10.1016/j.compstruct.2020.113206.
  10. Behfarnia, K. and Khademi, F. (2017), "A comprehensive study on the concrete compressive strength estimation using artificial neural network and adaptive neuro-fuzzy inference system", Iran Univ. Sci. Technol., 7(1), 71-80.
  11. Benzaid, R., Mesbah, H. and Chikh, N.E. (2010), "FRP-confined concrete cylinders: axial compression experiments and strength model", J. Reinf. Plast. Compos., 29(16), 2469-2488. https://doi.org/10.1177/0731684409355199.
  12. Berradia, M. and Kassoul, A. (2018), "Ultimate strength and strain models proposed for CFRP confined concrete cylinders", Steel Compos. Struct., 29(4), 465-481. https://doi.org/10.12989/scs.2018.29.4.465.
  13. Berthet, J., Ferrier, E. and Hamelin, P. (2005), "Compressive behavior of concrete externally confined by composite jackets. Part A: experimental study", Constr. Build. Mater., 19(3), 223-232. https://doi.org/10.1016/j.conbuildmat.2004.05.012.
  14. Bullo, S. (2003), "Experimental study of the effects of the ultimate strain of fiber reinforced plastic jackets on the behavior of confined concrete", Proceedings of the International Conference Composites in Construction, Cosenza, Italy.
  15. Carey, S. and Harries, K. (2005), "Axial behavior and modeling of small-, medium-, and large-scale cylindrical sections confined with CFRP jackets", ACI Struct. J., 7(102), 4. https://doi.org/10.14359/14564.
  16. Carey, S.A. (2003), "The effects of shape, gap, and scale on the behavior and modeling of variably confined concrete", University of South Carolina.
  17. Comert, M., Goksu, C. and Ilki, A. (2009), "Towards a tailored stress-strain behavior for FRP confined low strength concrete", Proceedings of the 9th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures, Sydney, Australia.
  18. De Lorenzis, L., Micelli, F. and La Tegola, A. (2002), "Influence of specimen size and resin type on the behaviour of FRPconfined concrete cylinders", Advanced Polymer Composites for Structural Applications in Construction, 231-239. https://doi.org/10.1680/apcfsaic.31227.0024.
  19. Demers, M. and Neale, K.W. (1994), "Strengthening of concrete columns with unidirectional composite sheets", Developments in Short And Medium Span Bridge Engineering, 895-905.
  20. El Ouni, M.H. and Raza, A. (2021), "Data-driven analysis of concrete-filled steel-tube CFRP-confined NC columns", Mech. Adv. Mater. Struct., 1-22. https://doi.org/10.1080/15376494.2021.1961953.
  21. Fahmy, M.F. and Wu, Z. (2010), "Evaluating and proposing models of circular concrete columns confined with different FRP composites", Compos. Part B: Eng., 41(3), 199-213. https://doi.org/10.1016/j.compositesb.2009.12.001.
  22. Fardis, M.N. and Khalili, H.H. (1982), "FRP-encased concrete as a structural material", Mag. Concrete Res., 34(121), 191-202. https://doi.org/10.1680/macr.1982.34.121.191.
  23. Fathi, M., Jalal, M. and Rostami, S. (2015), "Compressive strength prediction by ANN formulation approach for CFRP confined concrete cylinders", Earthq. Struct., 8(5), 1171-1190. https://doi.org/10.12989/eas.2015.8.5.1171.
  24. Fossetti, M., Basone, F., D'Arenzo, G., Macaluso, G. and Siciliano, A.F. (2018), "FRP-confined concrete columns: a new procedure for evaluating the performance of square and circular sections", Adv. Civil Eng., 2018, Article ID 2543850. https://doi.org/10.1155/2018/2543850.
  25. Harries, K. and Kharel, G. (2002), "Behavior of variably confined concrete", ACI Mater. J., 99(2), 180-189.
  26. Harries, K.A. and Carey, S.A. (2003), "Shape and "gap" effects on the behavior of variably confined concrete", Cement Concrete Res., 33(6), 881-890. https://doi.org/10.1016/s0008-8846(02)01085-2.
  27. Harries, K.A. and Kharel, G. (2002), "Behavior and modeling of concrete subject to variable confining pressure", Mater. J., 99(2), 180-189. https://doi.org/10.14359/11711.
  28. Hu, B. and Wang, J. (2009), "Comparison of strength, ultimate strain models of concrete columns confined with FRP", J. Civil Arch. Environ. Eng., 31, 9-15.
  29. Ilki, A., Kumbasar, N. and Koc, V. (2002), "Strength and deformability of low strength concrete confined by carbon fiber composite sheets", Proc. ASCE 15th Engineering Mechanics Conference.
  30. Ilki, A., Kumbasar, N. and Koc, V. (2004), "Low strength concrete members externally confined with FRP sheets", Struct. Eng. Mech., 18(2), 167-194. https://doi.org/10.12989/sem.2004.18.2.167.
  31. Ivakhnenko, A. and Ivakhnenko, G. (1995), "The review of problems solvable by algorithms of the group method of data handling (GMDH)", Pattern Recognition and Image Analysis c/c of Raspoznavaniye Obrazov I Analiz Izobrazhenii, 5, 527-535.
  32. Jalal, M. (2015), "Soft computing techniques for compressive strength prediction of concrete cylinders strengthened by CFRP composites", Sci. Eng. Compos. Mater., 22(1), 97-112. https://doi.org/10.1515/secm-2013-0240.
  33. Jiang, C., Wu, Y.F. and Jiang, J.F. (2017), "Effect of aggregate size on stress-strain behavior of concrete confined by fiber composites", Compos. Struct., 168, 851-862. https://doi.org/10.1016/j.compstruct.2017.02.087.
  34. Jiang, T. and Teng, J. (2007), "Analysis-oriented stress-strain models for FRP-confined concrete", Eng. Struct., 29(11), 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010.
  35. Kamgar, R., Naderpour, H., Komeleh, H.E., Jakubczyk-Galczynska, A. and Jankowski, R. (2020), "A proposed soft computing model for ultimate strength estimation of FRPconfined concrete cylinders", Appl. Sci., 10(5), 1769. https://doi.org/10.3390/app10051769.
  36. Karbhari, V.M. and Gao, Y. (1997), "Composite jacketed concrete under uniaxial compression-Verification of simple design equations", J. Mater. Civil Eng., 9(4), 185-193. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(185).
  37. Khan, Q.S., Sheikh, M.N. and Hadi, M.N. (2019), "Predicting strength and strain enhancement ratios of circular fiberreinforced polymer tube confined concrete under axial compression using artificial neural networks", Adv. Struct. Eng., 22(6), 1426-1443. https://doi.org/10.1177/1369433218815229.
  38. Kharel, G. (2001), "Behavior and modeling of variably confined concrete", University of South Carolina.
  39. Kono, S., Inazumi, M. and Kaku, T. (1998), "Evaluation of confining effects of CFRP sheets on reinforced concrete members", Second International Conference on Composites in Infrastructure National Science Foundation.
  40. Lam, L. and Teng, J. (2004), "Ultimate condition of fiber reinforced polymer-confined concrete", J. Compos. Constr., 8(6), 539-548. https://doi.org/10.1061/(asce)1090-0268(2004)8:6(539).
  41. Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for FRP-confined concrete", Constr. Build. Mater., 17(6-7), 471-489. https://doi.org/10.1016/s0950-0618(03)00045-x.
  42. Lam, L., Teng, J., Cheung, C. and Xiao, Y. (2006), "FRP-confined concrete under axial cyclic compression", Cement Concrete Compos., 28(10), 949-958. https://doi.org/10.1016/j.cemconcomp.2006.07.007.
  43. Lin, H.J. and Chen, C.T. (2001), "Strength of concrete cylinder confined by composite materials", J. Reinf. Plast. Compos., 20(18), 1577-1600. https://doi.org/10.1177/073168401772679066.
  44. Lin, H.J. and Liao, C.I. (2004), "Compressive strength of reinforced concrete column confined by composite material", Compos. Struct., 65(2), 239-250. https://doi.org/10.1016/j.compstruct.2003.11.001.
  45. Luke, A., Bisby, A.D. and Green, M.F. (2005), "Comparison of confinement models for fiber-reinforced polymer-wrapped concrete", Struct. J., 102(1), 62-72. https://doi.org/10.14359/13531.
  46. Ma, H., Wu, Y., Huang, C. and Zhao, Y. (2021), "Mechanical properties and bearing capacity of CFRP confined steel reinforced recycled concrete columns under axial compression loading", Struct. Eng. Mech., 79(4), 451-472. https://doi.org/10.1016/j.compstruct.2020.112408.
  47. Mandal, S., Hoskin, A. and Fam, A. (2005), "Influence of concrete strength on confinement effectiveness of fiber-reinforced polymer circular jackets", ACI Struct. J., 102(3), 383. https://doi.org/10.14359/14409.
  48. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  49. Matthys, S., Toutanji, H., Audenaert, K. and Taerwe, L. (2005), "Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites", ACI Struct. J., 102(2), 258. https://doi.org/10.14359/14277.
  50. Mercimek, O., Anil, O., Ghoroubi, R., Sakin, S. and Yilmaz, T. (2021), "Experimental and numerical investigation of RC column strengthening with CFRP strips subjected to lowvelocity impact load", Struct. Eng. Mech., 79(6), 749-765. https://doi.org/10.12989/sem.2021.79.6.749.
  51. Micelli, F., Myers, J. and Murthy, S. (2001), "Effect of environmental cycles on concrete cylinders confined with FRP", Proceedings of CCC2001 International Conference on Composites in Construction, Porto, Portugal.
  52. Mirmiran, A., Shahawy, M., Samaan, M., Echary, H.E., Mastrapa, J.C. and Pico, O. (1998), "Effect of column parameters on FRPconfined concrete", J. Compos. Constr., 2(4), 175-185. https://doi.org/10.1061/(asce)1090-0268(1998)2:4(175).
  53. Modarelli, R., Micelli, F. and Manni, O. (2005), "FRPconfinement of hollow concrete cylinders and prisms", Proceedings of the 7th International Symposium on Fiber Reinforced Polymer Reinforcement of Reinforced Concrete Structures, Citeseer.
  54. Naderpour, H., Kheyroddin, A. and Amiri, G.G. (2010), "Prediction of FRP-confined compressive strength of concrete using artificial neural networks", Compos. Struct., 92(12), 2817-2829. https://doi.org/10.1016/j.compstruct.2010.04.008.
  55. Nanni, A. and Bradford, N.M. (1995), "FRP jacketed concrete under uniaxial compression", Constr. Build. Mater., 9(2). 115-124. https://doi.org/10.1016/0950-0618(95)00004-Y.
  56. Narule, G.N. and Bambole, A.N. (2018), "Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio", Struct. Eng. Mech., 65(6), 679-687. https://doi.org/10.12989/sem.2018.65.6.679.
  57. Ozbakkaloglu, T. and Lim, J.C. (2013), "Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model", Compos. Part B: Eng., 55, 607-634. https://doi.org/10.1016/j.compositesb.2013.07.025.
  58. Pham, T.M. and Hadi, M.N. (2014), "Confinement model for FRP confined normal-and high-strength concrete circular columns", Constr. Build. Mater., 69, 83-90. https://doi.org/10.1016/j.conbuildmat.2014.06.036.
  59. Picher, F.A.R. (1996), "Confinement of concrete cylinders with CFRP", 1st International Conference on Composites for Infrastructures, University of Arizona, Tucson, AZ.
  60. Rafique, U., Ali, A. and Raza, A. (2021), "Structural behavior of GFRP reinforced recycled aggregate concrete columns with polyvinyl alcohol and polypropylene fibers", Adv. Struct. Eng., 13694332211017997. https://doi.org/10.1177/13694332211017997.
  61. Raza, A. and Khan, Q. (2020), "Experimental and theoretical study of GFRP hoops and spirals in hybrid fiber reinforced concrete short columns", Mater. Struct., 53(6), 1-14. https://doi.org/10.1617/s11527-020-01575-9.
  62. Raza, A. and Khan, Q. (2020), "Structural behavior of GFRPreinforced circular HFRC columns under concentric and eccentric loading", Arab. J. Sci. Eng., 46(5), 4239-4252. https://doi.org/10.1007/s13369-020-04881-0.
  63. Raza, A. and Rafique, U. (2020d), "Efficiency of GFRP bars and hoops in recycled aggregate concrete columns: Experimental and numerical study", Compos. Struct., 255, 112986. https://doi.org/10.1016/j.compstruct.2020.112986.
  64. Raza, A., Ali, B. and Aslam, H.M.U. (2021a), "Axial performance of hybrid fiber reinforced concrete columns having GFRP longitudinal bars and spirals", J. Build. Eng., 35, 102017. https://doi.org/10.1016/j.jobe.2020.102017.
  65. Raza, A., Ali, B., Masood, B. and ur Rehman, A. (2021b), "Axial performance of GFRP composite bars and spirals in circular hollow concrete columns", Struct., 29, 600-613. https://doi.org/10.1016/j.istruc.2020.11.043.
  66. Raza, A., Ali, B., Nawaz, M.A. and Ahmed, I. (2020a), "Structural performance of FRP-RC compression members wrapped with FRP composites", Struct., 27, 1693-1709. https://doi.org/10.1016/j.istruc.2020.07.071.
  67. Raza, A., El Ouni, M.H. Ali, L., Awais, M., Ali, B., Ahmad, Z. and Kahla, N.B. (2022), "Structural evaluation of recycled aggregate concrete circular columns having FRP rebars and synthetic fibers", Eng. Struct., 250, 113392. https://doi.org/10.1016/j.engstruct.2021.113392.
  68. Raza, A., El Ouni, M.H. and Berradia, M. (2021c), "Structural assessment of eccentrically loaded GFRP reinforced circular concrete columns: experiments and finite element analysis", Compos. Struct., 275, 114528. https://doi.org/10.1016/j.compstruct.2021.114528.
  69. Raza, A., Khan, Q. and Ahmad, A. (2021d), "Investigation of HFRC columns reinforced with GFRP bars and spirals under concentric and eccentric loadings", Eng. Struct., 227, 111461. https://doi.org/10.1016/j.engstruct.2020.111461.
  70. Raza, A., Khan, Q. and. Ahmad, A (2019), "Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS", Adv. Civil Eng., 2019, Article ID 1745341. https://doi.org/10.1155/2019/1745341.
  71. Raza, A., Khan, Q.U.Z. and Ahmad, A. (2020), "Reliability analysis of proposed capacity equation for predicting the behavior of steel-tube concrete columns confined with CFRP sheets", Comput. Concrete, 25(5), 383-400. https://doi.org/10.12989/cac.2020.25.5.383.
  72. Raza, A., Manalo, A.C., Rafique, U. and AlAjarmeh, O.S. (2021e), "Concentrically loaded recycled aggregate geopolymer concrete columns reinforced with GFRP bars and spirals", Compos. Struct., 268, 113968. https://doi.org/10.1016/j.compstruct.2021.113968.
  73. Raza, A., Rafique, U., Masood, B., Ali, B., ul Haq, F. and Nawaz, A. (2021f), "Performance evaluation of hybrid fiber reinforced low strength concrete cylinders confined with CFRP wraps", Struct., 32, 182-189. https://doi.org/10.1016/j.istruc.2021.01.103.
  74. Raza, A., Shah, S.A.R., Alhazmi, H., Abrar, M. and Razzaq, S. (2021g), "Strength profile pattern of FRP-reinforced concrete structures: A performance analysis through finite element analysis and empirical modeling technique", Polym., 13(8), 1265. https://doi.org/10.3390/polym13081265.
  75. Raza, A., Shah, S.A.R., Khan, A.R., Aslam, M.A., Khan, T.A., Arshad, K., Hussan, S., Sultan, A., Shahzadi, G. and Waseem, M. (2020e), "Sustainable FRP-confined symmetric concrete structures: an application experimental and numerical validation process for reference data", Appl. Sci., 10(1), 333. https://doi.org/10.3390/app10010333.
  76. Raza, A., Shah, S.A.R., ul Haq, F., Arshad, H., Raza, S.S., Farhan, M. and Waseem, M. (2020f), "Prediction of axial load-carrying capacity of GFRP-reinforced concrete columns through artificial neural networks", Struct., 28, 1557-1571. https://doi.org/10.1016/j.istruc.2020.10.010,
  77. Raza, A., ur Rehman, A., Masood, B. and Hussain, I. (2020g), "Finite element modelling and theoretical predictions of FRPreinforced concrete columns confined with various FRP-tubes", Struct., 26, 626-638. https://doi.org/10.1016/j.istruc.2020.04.033.
  78. Richart, F., Brandtzaeg, A. and Brown, R. (1929), "The failure of plain and spirally reinforced concrete in compression. Bulletin 190", University of Illinois Engineering Experimental Station, Illinois.
  79. Richart, F.E., Brandtzae g, A. and Brown, R.L. (1928), "A study of the failure of concrete under combined compressive stresses", University of Illinois at Urbana Champaign, College of Engineering.
  80. Rousakis, T. and Tepfers, R. (2004), "Behavior of concrete confined by high E-modulus carbon FRP sheets, subjected to monotonic and cyclic axial compressive load", Nordic Concrete Research-Publications, 31, 73.
  81. Rousakis, T., Rakitzis, T. and Karabinis, A. (2012), "Empirical modelling of failure strains of uniformly FRP confined concrete columns", Proc., Int. Conf. on FRP Composites in Civil Engineering.
  82. Saadatmanesh, H., Ehsani, M.R. and Li, M.W. (1994), "Strength and ductility of concrete columns externally reinforced with fiber composite straps", Struct. J., 91(4), 434-447. https://doi.org/10.14359/4151.
  83. Saafi, M., Toutanji, H. and Li, Z. (1999), "Behavior of concrete columns confined with fiber reinforced polymer tubes", Mater. J., 96(4), 500-509. https://doi.org/10.14359/652.
  84. Sadeghian, P. and Fam, A. (2015), "Improved design-oriented confinement models for FRP-wrapped concrete cylinders based on statistical analyses", Eng. Struct., 87, 162-182. https://doi.org/10.1016/j.engstruct.2015.01.024.
  85. Saiid Saiidi, M., Sureshkumar, K. and Pulido, C. (2005), "Simple carbon-fiber-reinforced-plastic-confined concrete model for moment-curvature analysis", J. Compos. Constr., 9(1), 101-104. https://doi.org/10.1061/(asce)1090-0268(2005)9:1(101).
  86. Setvati, M.R. and Mustaffa, Z. (2018), "Rehabilitation of notched circular hollow sectional steel beam using CFRP patch", Steel Compos. Struct., 26(2), 151-161. https://doi.org/10.12989/scs.2018.26.2.151.
  87. Shahawy, M., Mirmiran, A. and Beitelman, T. (2000), "Tests and modeling of carbon-wrapped concrete columns", Compos. Part B: Eng., 31(6-7), 471-480. https://doi.org/10.1016/s1359-8368(00)00021-4.
  88. Sharifi, Y., Lotfi, F. and Moghbeli, A. (2019), "Compressive strength prediction using the ANN method for FRP confined rectangular concrete columns", J. Rehab. Civil Eng., 7(4), 134-153.
  89. Shehata, I.A., Carneiro, L.A. and Shehata, L.C. (2002), "Strength of short concrete columns confined with CFRP sheets", Mater. Struct., 35(1), 50-58. https://doi.org/10.1617/13686.
  90. Spoelstra, M.R. and Monti, G. (1999), "FRP-confined concrete model", J. Compos. Constr., 3(3), 143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143).
  91. Teng, J., Jiang, T., Lam, L. and Luo, Y. (2009), "Refinement of a design-oriented stress-strain model for FRP-confined concrete", J. Compos. Constr., 13(4), 269-278. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012.
  92. Teng, J.G., Yu, T., Wong, Y. and Dong, S. (2007), "Hybrid FRP-concrete-steel tubular columns: concept and behavior", Constr. Build. Mater., 21(4), 846-854. https://doi.org/10.1016/j.conbuildmat.2006.06.017.
  93. Touhari, M. and Mitiche-Kettab, R. (2016), "Behaviour of FRP confined concrete cylinders: Experimental investigation and strength model", Periodica Polytechnica Civil Eng., 60(4), 647-660. https://doi.org/10.3311/ppci.8759.
  94. Toutanji, H. (1999), "Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets", Mater. J., 96(3), 397-404. https://doi.org/10.14359/639.
  95. Wang, L.M. and Wu, Y.F. (2008), "Effect of corner radius on the performance of CFRP-confined square concrete columns: Test", Eng. Struct., 30(2), 493-505. https://doi.org/10.1016/j.engstruct.2007.04.016.
  96. Watanabe, K., Nakamura, H., Honda, Y., Toyoshima, M., Iso, M., Fujimaki, T., Kaneto, M. and Shirai, N. (1997), "Confinement effect of FRP sheet on strength and ductility of concrete cylinders under uniaxial compression. Non-Metallic (FRP) Reinforcement for Concrete Structures", Japan Concrete Institute. Proceedings of the Third International Symposium.
  97. Wong, Y., Yu, T., Teng, J. and Dong, S. (2008), "Behavior of FRP-confined concrete in annular section columns", Compos. Part B: Eng., 39(3), 451-466. https://doi.org/10.1016/j.compositesb.2007.04.001.
  98. Wu, G., Wu, Z., Lu, Z. and Ando, Y. (2008), "Structural performance of concrete confined with hybrid FRP composites", J. Reinf. Plast. Compos., 27(12), 1323-1348. https://doi.org/10.1177/0731684407084989.
  99. Wu, Y.F. and Jiang, J.F. (2013), "Effective strain of FRP for confined circular concrete columns", Compos. Struct., 95, 479-491. https://doi.org/10.1016/j.compstruct.2012.08.021.
  100. Wu, Y.F. and Wei, Y.Y. (2010), "Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns", Eng. Struct., 32(1), 32-45. https://doi.org/10.1016/j.engstruct.2009.08.012.
  101. Xiao, Y. and Wu, H. (2000), "Compressive behavior of concrete confined by carbon fiber composite jackets", J. Mater. Civil Eng., 12(2), 139-146. https://doi.org/10.1061/(asce)0899-1561(2000)12:2(139).
  102. Xiao, Y. and Wu, H. (2003), "Compressive behavior of concrete confined by various types of FRP composite jackets", J. Reinf. Plast. Compos., 22(13), 1187-1201. https://doi.org/10.1177/0731684403035430.
  103. Youssef, M.N., Feng, M.Q. and Mosallam, A.S. (2007), "Stress-strain model for concrete confined by FRP composites", Compos. Part B: Eng., 38(5-6), 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020.
  104. Youssf, O., Hassanli, R. and Mills, J.E. (2017), "Mechanical performance of FRP-confined and unconfined crumb rubber concrete containing high rubber content", J. Build. Eng., 11, 115-126. https://doi.org/10.1016/j.jobe.2017.04.011.